Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Luo Xiaofan,Hu Xianmin,Nie Hongtao, et al. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans[J]. Haiyang Xuebao,2019, 41(9):1–12,doi:10.3969/j.issn.0253−4193.2019.09.001
Citation: Luo Xiaofan,Hu Xianmin,Nie Hongtao, et al. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans[J]. Haiyang Xuebao,2019, 41(9):1–12,doi:10.3969/j.issn.0253−4193. 2019.09.001

Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans

doi: 10.3969/j.issn.0253-4193.2019.09.001
  • Received Date: 2018-08-04
  • Rev Recd Date: 2018-11-30
  • Available Online: 2021-04-21
  • Publish Date: 2019-09-25
  • Coupled ocean and sea-ice models, developed based on Version 3.6 of the Nucleus for European Modelling of the Ocean (NEMO), with the sea-ice component being Version 3 of Louvain-la-Neuve Sea Ice Model (LIM), are applied for hindcast simulations covering the North Atlantic-North Pacific-Arctic Oceans (NAPA). The two model configurations, NAPA1/4 and NAPA1/12, have nominal horizontal resolutions of (1/4)° and (1/12)° in latitude/longitude, respectively. The model domains cover the Pacific Ocean north of 45°N, the whole Arctic, and the North Atlantic north of 26°N for NAPA1/4 and 7°N for NAPA1/12. A decade-long hindcast from 1993 to 2015 using NAPA1/4 has been completed. The hindcast results of sea-ice, circulation and hydrography variations in the Arctic Ocean are evaluated with available observational data and previously published results. The evaluation suggests that NAPA1/4 possesses reasonable skills in reproducing the key thermal and dynamic processes, and can be applied to study the seasonal and inter-annual variations of sea-ice, water masses, and Atlantic/Pacific inflows/outflows. Preliminary analysis of the NAPA1/12 hindcast during 1993-1996 suggests that increasing horizontal resolution simulates more details of the spatial structures of sea-ice, water-mass properties, and ocean circulation.
  • loading
  • [1]
    Serreze M C, Barry R G. Processes and impacts of Arctic amplification: a research synthesis[J]. Global and Planetary Change, 2011, 77(1/2): 85−96.
    [2]
    赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985−995.

    Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985−995.
    [3]
    Carmack E, McLaughlin F. Towards recognition of physical and geochemical change in Subarctic and Arctic Seas[J]. Progress in Oceanography, 2011, 90(1/4): 90−104.
    [4]
    Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502.
    [5]
    Wood K R, Bond N A, Danielson S L, et al. A decade of environmental change in the Pacific Arctic region[J]. Progress in Oceanography, 2015, 136: 12−31. doi: 10.1016/j.pocean.2015.05.005
    [6]
    陈立奇, 祁第, 高众勇, 等. 快速融冰背景下北冰洋夏季表层海水CO2分压的变异假设[J]. 科学通报, 2016, 61(21): 2419−2425.

    Chen Liqi, Qi Di, Gao Zhongyong, et al. A hypothesis on variability of surface water pCO2 under the rapid sea-ice retreat during summer in the Arctic Ocean[J]. Chinese Science Bulletin, 2016, 61(21): 2419−2425.
    [7]
    Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer[J]. Continental Shelf Research, 2016, 129: 23−32. doi: 10.1016/j.csr.2016.09.010
    [8]
    聂红涛, 王蕊, 赵伟, 等. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084−1092. doi: 10.11867/j.issn.1001-8166.2017.10.1084

    Nie Hongtao, Wang Rui, Zhao Wei, et al. Key scientific problems and challenges of studying carbon cycle mechanism in Pacific sector of the Arctic[J]. Advances in Earth Science, 2017, 32(10): 1084−1092. doi: 10.11867/j.issn.1001-8166.2017.10.1084
    [9]
    Qi Di, Chen Liqi, Chen Baoshan, et al. Increase in acidifying water in the western Arctic Ocean[J]. Nature Climate Change, 2017, 7(3): 195−199. doi: 10.1038/nclimate3228
    [10]
    Ilicak M, Drange H, Wang Qiang, et al. An assessment of the Arctic Ocean in a suite of interannual CORE-Ⅱ simulations. Part Ⅲ: Hydrography and fluxes[J]. Ocean Modelling, 2016, 100: 141−161. doi: 10.1016/j.ocemod.2016.02.004
    [11]
    Wang Qiang, Ilicak M, Gerdes R, et al. An assessment of the Arctic Ocean in a suite of interannual CORE-Ⅱ simulations. Part I: Sea ice and solid freshwater[J]. Ocean Modelling, 2016, 99: 110−132. doi: 10.1016/j.ocemod.2015.12.008
    [12]
    Wang Qiang, Ilicak M, Gerdes R, et al. An assessment of the Arctic Ocean in a suite of interannual CORE-Ⅱ simulations. Part Ⅱ: Liquid freshwater[J]. Ocean Modelling, 2016, 99: 86−109. doi: 10.1016/j.ocemod.2015.12.009
    [13]
    Proshutinsky A, Steele M, Timmermans M L. Forum for Arctic modeling and observational synthesis (FAMOS): past, current, and future activities[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3803−3819. doi: 10.1002/2016JC011898
    [14]
    Dupont F, Higginson S, Bourdallé-Badie R, et al. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans[J]. Geoscientific Model Development, 2015, 8(5): 1577−1594. doi: 10.5194/gmd-8-1577-2015
    [15]
    Paquin J P, Lu Youyu, Higginson S, et al. Modelled variations of deep convection in the irminger sea during 2003-10[J]. Journal of Physical Oceanography, 2016, 46(1): 179−196. doi: 10.1175/JPO-D-15-0078.1
    [16]
    Chelton D B, deSzoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433−460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
    [17]
    Nurser A J G, Bacon S. The rossby radius in the Arctic Ocean[J]. Ocean Science, 2014, 10(6): 967−975. doi: 10.5194/os-10-967-2014
    [18]
    Madec G. NEMO Ocean Engine[M]. France: Institut Pierre-Simon Laplace, 2008.
    [19]
    Vancoppenolle M, Fichefet T, Goosse H, et al. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation[J]. Ocean Modelling, 2009, 27(1/2): 33−53.
    [20]
    Rousset C, Vancoppenolle M, Madec G, et al. The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities[J]. Geoscientific Model Development, 2014, 8(10): 2991−3005.
    [21]
    Madec G, Imbard M. A global ocean mesh to overcome the North Pole singularity[J]. Climate Dynamics, 1996, 12(6): 381−388. doi: 10.1007/BF00211684
    [22]
    Molines J M, Barnier B, Penduff T, et al. Definition of the interannual experiment ORCA025-G70, 1958-2004[R]. Grenoble, France: Laboratoire des Ecoulements Geophysiques et Industriels, 2007.
    [23]
    Dussin R, Barnier B, Brodeau L, et al. The Making of the DRAKKAR FORCING SET DFS5[R]. Stockholm, Sweden: Stockholm University, 2016.
    [24]
    Dai Aiguo, Qian Taotao, Trenberth K E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2773−2792. doi: 10.1175/2008JCLI2592.1
    [25]
    Locarnini R A, Mishonov A V, Antonov J I, et al. WORLD OCEAN ATLAS 2013. Volume 1: temperature[R]. Silver Spring, MD: NOAA, 2013.
    [26]
    Zweng M M, Reagan J R, Antonov J I, et al. WORLD OCEAN ATLAS 2013. Volume 2: salinity[R]. Silver Spring, MD: NOAA, 2013.
    [27]
    Ferry N, Parent L, Garric G, et al. GLORYS2V1 global ocean reanalysis of the altimetric era (1993-2009) at meso scale[J]. Mercator Quarterly Newsletter, 2012, 44: 28−39.
    [28]
    Flather R A. A tidal model of the Northeast Pacific[J]. Atmosphere-Ocean, 1987, 25(1): 22−45. doi: 10.1080/07055900.1987.9649262
    [29]
    Uotila P, Iovino D, Vancoppenolle M, et al. Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2[J]. Geoscientific Model Development, 2017, 10(2): 1009−1031. doi: 10.5194/gmd-10-1009-2017
    [30]
    Blanke B, Delecluse P. Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics[J]. Journal of Physical Oceanography, 1993, 23(7): 1363−1388. doi: 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2
    [31]
    Rodi W. Examples of calculation methods for flow and mixing in stratified fluids[J]. Journal of Geophysical Research: Oceans, 1987, 92(C5): 5305−5328. doi: 10.1029/JC092iC05p05305
    [32]
    Umlauf L, Burchard H. A generic length-scale equation for geophysical turbulence models[J]. Journal of Marine Research, 2003, 61(2): 235−265. doi: 10.1357/002224003322005087
    [33]
    Timmermans M L, Proshutinsky A, Golubeva E, et al. Mechanisms of Pacific summer water variability in the Arctic's Central Canada Basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 7523−7548. doi: 10.1002/2014JC010273
    [34]
    Talley L D, Pickard G L, Emery W J, et al. Descriptive Physical Oceanography[M]. 6th ed. Amsterdam: Elsevier, 2011.
    [35]
    Corlett W B, Pickart R S. The Chukchi slope current[J]. Progress in Oceanography, 2017, 153: 50−65. doi: 10.1016/j.pocean.2017.04.005
    [36]
    Smedsrud L H, Esau I, Ingvaldsen R B, et al. The role of the Barents Sea in the Arctic climate system[J]. Reviews of Geophysics, 2013, 51(3): 415−449. doi: 10.1002/rog.20017
    [37]
    Wang Qiang, Wekerle C, Danilov S, et al. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4[J]. Geoscientific Model Development, 2018, 11(4): 1229−1255. doi: 10.5194/gmd-11-1229-2018
    [38]
    Schauer U, Beszczynska-Möller A, Walczowski W, et al. Variation of measured heat flow through the Fram Strait between 1997 and 2006[M]//Dickson R R, Meincke J, Rhines P. Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate. Dordrecht: Springer, 2008: 65–85.
    [39]
    Wekerle C, Wang Qiang, Danilov S, et al. The Canadian Arctic archipelago throughflow in a multiresolution global model: Model assessment and the driving mechanism of interannual variability[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4525−4541. doi: 10.1002/jgrc.20330
    [40]
    Zhang Yu, Chen Changsheng, Beardsley R C, et al. Studies of the Canadian Arctic archipelago water transport and its relationship to basin-local forcings: Results from AO-FVCOM[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4392−4415. doi: 10.1002/2016JC011634
    [41]
    Cuny J, Rhines P B, Kwok R. Davis Strait volume, freshwater and heat fluxes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(3): 519−542. doi: 10.1016/j.dsr.2004.10.006
    [42]
    Curry B, Lee C M, Petrie B. Volume, freshwater, and heat fluxes through Davis Strait, 2004-05[J]. Journal of Physical Oceanography, 2011, 41(3): 429−436. doi: 10.1175/2010JPO4536.1
    [43]
    Curry B, Lee C M, Petrie B, et al. Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004-10[J]. Journal of Physical Oceanography, 2014, 44(4): 1244−1266. doi: 10.1175/JPO-D-13-0177.1
    [44]
    Coachman L K. On the flow field in the Chirikov basin[J]. Continental Shelf Research, 1993, 13(5/6): 481−508.
    [45]
    Woodgate R A, Stafford K M, Prahl F G. A synthesis of year-round interdisciplinary mooring measurements in the Bering Strait (1990-2014) and the RUSALCA years (2004-2011)[J]. Oceanography, 2015, 28(3): 46−67. doi: 10.5670/oceanog
    [46]
    Shimada K, Kamoshida T, Itoh M, et al. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean[J]. Geophysical Research Letters, 2006, 33(8): L08605.
    [47]
    Woodgate R A, Weingartner T, Lindsay R. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat[J]. Geophysical Research Letters, 2010, 37(1): L01602.
    [48]
    Steele M, Morison J, Ermold W, et al. Circulation of summer Pacific halocline water in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02027.
    [49]
    Aagaard K, Weingartner T J, Danielson S L, et al. Some controls on flow and salinity in Bering Strait[J]. Geophysical Research Letters, 2006, 33(19): L19602. doi: 10.1029/2006GL026612
    [50]
    Rudels B, Larsson A M, Sehlstedt P I. Stratification and water mass formation in the Arctic Ocean: some implications for the nutrient distribution[J]. Polar Research, 1991, 10(1): 19−32. doi: 10.1111/por.1991.10.issue-1
    [51]
    Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. Freshwater and its role in the Arctic marine system: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 675−717. doi: 10.1002/2015JG003140
    [52]
    Wang Q, Danilov S, Jung T, et al. Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends[J]. Geophysical Research Letters, 2016, 43(13): 7019−7027. doi: 10.1002/2016GL068696
    [53]
    Cooper L W, Whitledge T E, Grebmeier J M, et al. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait[J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12563−12573. doi: 10.1029/97JC00015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (663) PDF downloads(276) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return