Citation: | Sun Jun,Guo Congcong,Zhang Guicheng. A new pathway for carbon transportation of transparent exopolymer particles[J]. Haiyang Xuebao,2019, 41(8):125–130,doi:10.3969/j.issn.0253−4193. 2019.08.012 |
[1] |
Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1130−1140.
|
[2] |
Passow U, Alldredge A L. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean[J]. Marine Ecology Progress Series, 1994, 113(1/2): 185−198.
|
[3] |
Schuster S, Herndl G J. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea[J]. Marine Ecology Progress Series, 1995, 124: 227−236. doi: 10.3354/meps124227
|
[4] |
Engel A, Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Marine Ecology Progress Series, 2001, 219: 1−10. doi: 10.3354/meps219001
|
[5] |
Mari X, Migon C, Nicolas E. Reactivity of transparent exopolymeric particles: a key parameter of trace metal cycling in the lagoon of Nouméa, New Caledonia[J]. Marine Pollution Bulletin, 2009, 58(12): 1874−1879. doi: 10.1016/j.marpolbul.2009.07.017
|
[6] |
Rochelle-Newall E J, Mari X, Pringault O. Sticking properties of transparent exopolymeric particles (TEP) during aging and biodegradation[J]. Journal of Plankton Research, 2010, 32(10): 1433−1442. doi: 10.1093/plankt/fbq060
|
[7] |
Turner J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130: 205−248. doi: 10.1016/j.pocean.2014.08.005
|
[8] |
Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
|
[9] |
Passow U, Alldredge A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7): 1326−1335. doi: 10.4319/lo.1995.40.7.1326
|
[10] |
Ryan J P, Fischer A M, Kudela R M, et al. Recurrent frontal slicks of a coastal ocean upwelling shadow[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12070. doi: 10.1029/2010JC006398
|
[11] |
Wurl O, Miller L, Vagle S. Production and fate of transparent exopolymer particles in the ocean[J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C00H13.
|
[12] |
Wurl O, Miller L, Röttgers R, et al. The distribution and fate of surface-active substances in the sea-surface microlayer and water column[J]. Marine Chemistry, 2009, 115(1/2): 1−9.
|
[13] |
Williams P M, Carlucci A F, Henrichs S M, et al. Chemical and microbiological studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California[J]. Marine Chemistry, 1986, 19(1): 17−98. doi: 10.1016/0304-4203(86)90033-2
|
[14] |
Cunliffe M, Murrell J C. The sea-surface microlayer is a gelatinous biofilm[J]. The ISME Journal, 2009, 3(9): 1001−1003. doi: 10.1038/ismej.2009.69
|
[15] |
孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036
Sun Jun. Transparent exopolymer particles (TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036
|
[16] |
孙军. 海洋浮游植物与生物碳汇[J]. 生态学报, 2011, 31(18): 5372−5378.
Sun Jun. Marine phytoplankton and biological carbon sink[J]. Acta Ecologica Sinica, 2011, 31(18): 5372−5378.
|
[17] |
孙军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001
Sun Jun, Li Xiaoqian, Chen Jianfang, et al. Progress in oceanic biological pump[J]. Haiyang Xuebao, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001
|
[18] |
Michaels A F, Bates N R, Buesseler K O, et al. Carbon-cycle imbalances in the Sargasso Sea[J]. Nature, 1994, 372(6506): 537−540. doi: 10.1038/372537a0
|
[19] |
Passow U, Shipe R F, Murray A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4): 327−346. doi: 10.1016/S0278-4343(00)00101-1
|
[20] |
Nodder S D, Waite A M. Is southern ocean organic carbon and biogenic silica export enhanced by iron-stimulated increases in biological production? Sediment trap results from SOIREE[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48(11/12): 2681−2701.
|
[21] |
Karl D, Christian J R, Dore J E, et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43(2/3): 539−568.
|
[22] |
Buesseler K O, Barber R T, Dickson M L, et al. The effect of marginal ice-edge dynamics on production and export in the southern ocean along 170°W[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50(3/4): 579−603.
|
[23] |
Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752−755. doi: 10.1038/nature05317
|
[24] |
Rost B, Zondervan I, Wolf-Gladrow D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions[J]. Marine Ecology Progress Series, 2008, 373: 227−237. doi: 10.3354/meps07776
|
[25] |
Wood A, Van Valen L M. Paradox lost? On the release of energy-rich compounds by phytoplankton[J]. Marine Microbial Food Webs, 1990, 4: 103−116.
|
[26] |
Carlson D J. The early diagenesis of organic matter: reaction at the air-sea interface[M]//Engel M H, Macko S A. Organic Geochemistry: Principles and Applications. Boston, MA: Springer, 1993: 255–268.
|
[27] |
Mari X, Passow U, Migon C, et al. Transparent exopolymer particles: effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151: 13−37. doi: 10.1016/j.pocean.2016.11.002
|
[28] |
Azetsu-Scott K, Passow U. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3): 741−748. doi: 10.4319/lo.2004.49.3.0741
|
[29] |
William H, Sutcliffe Jr, Edward R, et al. Sea surface chemistry and Langmuir circulation[J]. Deep-Sea Research and Oceanographic Abstracts, 1963, 10(3): 233−243. doi: 10.1016/0011-7471(63)90359-0
|
[30] |
Obernosterer I, Catala P, Reinthaler T, et al. Enhanced heterotrophic activity in the surface microlayer of the Mediterranean Sea[J]. Aquatic Microbial Ecology, 2005, 39(3): 293−302.
|
[31] |
Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep-Sea Research Part II, 2002, 49(1): 219−236.
|
[32] |
Mari X, Robert M. Metal induced variations of TEP sticking properties in the southwestern lagoon of New Caledonia[J]. Marine Chemistry, 2008, 110(1/2): 98−108.
|
[33] |
Ploug H, Iversen M H, Fischer G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria[J]. Limnology and Oceanography, 2008, 53(5): 1878−1886. doi: 10.4319/lo.2008.53.5.1878
|
[34] |
Reigstad M. Plankton community and vertical flux of biogenic matter in north Norwegian fjords: Regulating factors, temporal and spatial variations[D]. Tromsø: University of Tromsø, 2000.
|
[35] |
Jokulsdottir T. Sinking biological aggregates in the ocean—a modeling study[D]. Chicago, Illinois: The University of Chicago, 2011.
|
[36] |
Engel A. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom[J]. Journal of Plankton Research, 2000, 22(3): 485−497. doi: 10.1093/plankt/22.3.485
|
[37] |
Engel A, Delille B, Jacquet S, et al. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment[J]. Aquatic Microbial Ecology, 2004, 34(1): 93−104.
|
[38] |
Bienfang P K. SETCOL—a technologically simple and reliable method for measuring phytoplankton sinking rates[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(10): 1289−1294. doi: 10.1139/f81-173
|
[39] |
Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, Part II, 1851, 9: 8−106.
|
[40] |
Alldredge A L, Silver M W. Characteristics, dynamics and significance of marine snow[J]. Progress in Oceanography, 1988, 20(1): 41−82. doi: 10.1016/0079-6611(88)90053-5
|
[41] |
Alldredge A L, Gotschalk C. In situ settling behavior of marine snow[J]. Limnology and Oceanography, 1988, 33(3): 339−351. doi: 10.4319/lo.1988.33.3.0339
|
[42] |
Cheng N S. Simplified settling velocity formula for sediment particle[J]. Journal of Hydraulic Engineering, 1997, 123(2): 149−152. doi: 10.1061/(ASCE)0733-9429(1997)123:2(149)
|
[43] |
Ferguson R I, Church M. A simple universal equation for grain settling velocity[J]. Journal of Sedimentary Research, 2004, 74(6): 933−937. doi: 10.1306/051204740933
|
[44] |
Mari X. Does ocean acidification induce an upward flux of marine aggregates?[J]. Biogeosciences, 2008, 5(4): 1023−1031. doi: 10.5194/bg-5-1023-2008
|
[45] |
Hunter K, Liss P. Polarographic measurement of surface-active material in natural waters[J]. Water Research, 1981, 15(2): 203−215. doi: 10.1016/0043-1354(81)90113-5
|
[46] |
Gašparović B, Ćosović B, Vojvodić V. Contribution of organic acids to the pool of surface active substances in model and marine samples using o-nitrophenol as an electrochemical probe[J]. Organic Geochemistry, 1998, 29(5/7): 1025−1032.
|
[47] |
Croot P L, Passow U, Assmy P, et al. Surface active substances in the upper water column during a southern ocean iron fertilization experiment (EIFEX)[J]. Geophysical Research Letters, 2007, 34(3): L03612.
|
[48] |
Frew N M, Goldman J C, Dennett M R, et al. Impact of phytoplankton-generated surfactants on air-sea gas exchange[J]. Journal of Geophysical Research: Oceans, 1990, 95(C3): 3337−3352. doi: 10.1029/JC095iC03p03337
|
[49] |
Russell L M, Hawkins L N, Frossard A A, et al. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6652−6657. doi: 10.1073/pnas.0908905107
|
[50] |
Tsai W T, Liu K K. An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux[J]. Journal of Geophysical Research: Oceans, 2003, 108(C4): 24.
|
[51] |
Calleja M L, Duarte C M, Prairie Y T, et al. Evidence for surface organic matter modulation of air-sea CO2 gas exchange[J]. Biogeosciences, 2009, 6(6): 1105−1114. doi: 10.5194/bg-6-1105-2009
|