Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Sun Jun,Guo Congcong,Zhang Guicheng. A new pathway for carbon transportation of transparent exopolymer particles[J]. Haiyang Xuebao,2019, 41(8):125–130,doi:10.3969/j.issn.0253−4193.2019.08.012
Citation: Sun Jun,Guo Congcong,Zhang Guicheng. A new pathway for carbon transportation of transparent exopolymer particles[J]. Haiyang Xuebao,2019, 41(8):125–130,doi:10.3969/j.issn.0253−4193. 2019.08.012

A new pathway for carbon transportation of transparent exopolymer particles

doi: 10.3969/j.issn.0253-4193.2019.08.012
  • Received Date: 2018-12-21
  • Rev Recd Date: 2019-03-13
  • Available Online: 2021-04-21
  • Publish Date: 2019-08-25
  • Previously, it was a broad consensus that transparent exopolymer particles (TEP) resulted in carbon flux output to the seabed due to its unique aggregation effect. Recently, some studies have shown that TEP could be retained in the water column and even ascend to the surface layer, which profoundly contributed to the elevated TEP concentrations and decreasing of air-sea carbon fluxes in the Surface Micro-layer (SML). The sinking or ascending of these TEP originated aggregates was finally depended on its density. TEP and further aggregated with other micro-particles became the surface-active substances in the SML, produce a thin layer film at the ocean-atmosphere interface, will heavily affect the exchange fluxes of sea-air CO2 and further the global climate changes.
  • loading
  • [1]
    Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1130−1140.
    [2]
    Passow U, Alldredge A L. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean[J]. Marine Ecology Progress Series, 1994, 113(1/2): 185−198.
    [3]
    Schuster S, Herndl G J. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea[J]. Marine Ecology Progress Series, 1995, 124: 227−236. doi: 10.3354/meps124227
    [4]
    Engel A, Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Marine Ecology Progress Series, 2001, 219: 1−10. doi: 10.3354/meps219001
    [5]
    Mari X, Migon C, Nicolas E. Reactivity of transparent exopolymeric particles: a key parameter of trace metal cycling in the lagoon of Nouméa, New Caledonia[J]. Marine Pollution Bulletin, 2009, 58(12): 1874−1879. doi: 10.1016/j.marpolbul.2009.07.017
    [6]
    Rochelle-Newall E J, Mari X, Pringault O. Sticking properties of transparent exopolymeric particles (TEP) during aging and biodegradation[J]. Journal of Plankton Research, 2010, 32(10): 1433−1442. doi: 10.1093/plankt/fbq060
    [7]
    Turner J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130: 205−248. doi: 10.1016/j.pocean.2014.08.005
    [8]
    Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
    [9]
    Passow U, Alldredge A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7): 1326−1335. doi: 10.4319/lo.1995.40.7.1326
    [10]
    Ryan J P, Fischer A M, Kudela R M, et al. Recurrent frontal slicks of a coastal ocean upwelling shadow[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12070. doi: 10.1029/2010JC006398
    [11]
    Wurl O, Miller L, Vagle S. Production and fate of transparent exopolymer particles in the ocean[J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C00H13.
    [12]
    Wurl O, Miller L, Röttgers R, et al. The distribution and fate of surface-active substances in the sea-surface microlayer and water column[J]. Marine Chemistry, 2009, 115(1/2): 1−9.
    [13]
    Williams P M, Carlucci A F, Henrichs S M, et al. Chemical and microbiological studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California[J]. Marine Chemistry, 1986, 19(1): 17−98. doi: 10.1016/0304-4203(86)90033-2
    [14]
    Cunliffe M, Murrell J C. The sea-surface microlayer is a gelatinous biofilm[J]. The ISME Journal, 2009, 3(9): 1001−1003. doi: 10.1038/ismej.2009.69
    [15]
    孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036

    Sun Jun. Transparent exopolymer particles (TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5): 1191−1198. doi: 10.3321/j.issn:1000-0933.2005.05.036
    [16]
    孙军. 海洋浮游植物与生物碳汇[J]. 生态学报, 2011, 31(18): 5372−5378.

    Sun Jun. Marine phytoplankton and biological carbon sink[J]. Acta Ecologica Sinica, 2011, 31(18): 5372−5378.
    [17]
    孙军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001

    Sun Jun, Li Xiaoqian, Chen Jianfang, et al. Progress in oceanic biological pump[J]. Haiyang Xuebao, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001
    [18]
    Michaels A F, Bates N R, Buesseler K O, et al. Carbon-cycle imbalances in the Sargasso Sea[J]. Nature, 1994, 372(6506): 537−540. doi: 10.1038/372537a0
    [19]
    Passow U, Shipe R F, Murray A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4): 327−346. doi: 10.1016/S0278-4343(00)00101-1
    [20]
    Nodder S D, Waite A M. Is southern ocean organic carbon and biogenic silica export enhanced by iron-stimulated increases in biological production? Sediment trap results from SOIREE[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48(11/12): 2681−2701.
    [21]
    Karl D, Christian J R, Dore J E, et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43(2/3): 539−568.
    [22]
    Buesseler K O, Barber R T, Dickson M L, et al. The effect of marginal ice-edge dynamics on production and export in the southern ocean along 170°W[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50(3/4): 579−603.
    [23]
    Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752−755. doi: 10.1038/nature05317
    [24]
    Rost B, Zondervan I, Wolf-Gladrow D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions[J]. Marine Ecology Progress Series, 2008, 373: 227−237. doi: 10.3354/meps07776
    [25]
    Wood A, Van Valen L M. Paradox lost? On the release of energy-rich compounds by phytoplankton[J]. Marine Microbial Food Webs, 1990, 4: 103−116.
    [26]
    Carlson D J. The early diagenesis of organic matter: reaction at the air-sea interface[M]//Engel M H, Macko S A. Organic Geochemistry: Principles and Applications. Boston, MA: Springer, 1993: 255–268.
    [27]
    Mari X, Passow U, Migon C, et al. Transparent exopolymer particles: effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151: 13−37. doi: 10.1016/j.pocean.2016.11.002
    [28]
    Azetsu-Scott K, Passow U. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3): 741−748. doi: 10.4319/lo.2004.49.3.0741
    [29]
    William H, Sutcliffe Jr, Edward R, et al. Sea surface chemistry and Langmuir circulation[J]. Deep-Sea Research and Oceanographic Abstracts, 1963, 10(3): 233−243. doi: 10.1016/0011-7471(63)90359-0
    [30]
    Obernosterer I, Catala P, Reinthaler T, et al. Enhanced heterotrophic activity in the surface microlayer of the Mediterranean Sea[J]. Aquatic Microbial Ecology, 2005, 39(3): 293−302.
    [31]
    Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep-Sea Research Part II, 2002, 49(1): 219−236.
    [32]
    Mari X, Robert M. Metal induced variations of TEP sticking properties in the southwestern lagoon of New Caledonia[J]. Marine Chemistry, 2008, 110(1/2): 98−108.
    [33]
    Ploug H, Iversen M H, Fischer G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria[J]. Limnology and Oceanography, 2008, 53(5): 1878−1886. doi: 10.4319/lo.2008.53.5.1878
    [34]
    Reigstad M. Plankton community and vertical flux of biogenic matter in north Norwegian fjords: Regulating factors, temporal and spatial variations[D]. Tromsø: University of Tromsø, 2000.
    [35]
    Jokulsdottir T. Sinking biological aggregates in the ocean—a modeling study[D]. Chicago, Illinois: The University of Chicago, 2011.
    [36]
    Engel A. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom[J]. Journal of Plankton Research, 2000, 22(3): 485−497. doi: 10.1093/plankt/22.3.485
    [37]
    Engel A, Delille B, Jacquet S, et al. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment[J]. Aquatic Microbial Ecology, 2004, 34(1): 93−104.
    [38]
    Bienfang P K. SETCOL—a technologically simple and reliable method for measuring phytoplankton sinking rates[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(10): 1289−1294. doi: 10.1139/f81-173
    [39]
    Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, Part II, 1851, 9: 8−106.
    [40]
    Alldredge A L, Silver M W. Characteristics, dynamics and significance of marine snow[J]. Progress in Oceanography, 1988, 20(1): 41−82. doi: 10.1016/0079-6611(88)90053-5
    [41]
    Alldredge A L, Gotschalk C. In situ settling behavior of marine snow[J]. Limnology and Oceanography, 1988, 33(3): 339−351. doi: 10.4319/lo.1988.33.3.0339
    [42]
    Cheng N S. Simplified settling velocity formula for sediment particle[J]. Journal of Hydraulic Engineering, 1997, 123(2): 149−152. doi: 10.1061/(ASCE)0733-9429(1997)123:2(149)
    [43]
    Ferguson R I, Church M. A simple universal equation for grain settling velocity[J]. Journal of Sedimentary Research, 2004, 74(6): 933−937. doi: 10.1306/051204740933
    [44]
    Mari X. Does ocean acidification induce an upward flux of marine aggregates?[J]. Biogeosciences, 2008, 5(4): 1023−1031. doi: 10.5194/bg-5-1023-2008
    [45]
    Hunter K, Liss P. Polarographic measurement of surface-active material in natural waters[J]. Water Research, 1981, 15(2): 203−215. doi: 10.1016/0043-1354(81)90113-5
    [46]
    Gašparović B, Ćosović B, Vojvodić V. Contribution of organic acids to the pool of surface active substances in model and marine samples using o-nitrophenol as an electrochemical probe[J]. Organic Geochemistry, 1998, 29(5/7): 1025−1032.
    [47]
    Croot P L, Passow U, Assmy P, et al. Surface active substances in the upper water column during a southern ocean iron fertilization experiment (EIFEX)[J]. Geophysical Research Letters, 2007, 34(3): L03612.
    [48]
    Frew N M, Goldman J C, Dennett M R, et al. Impact of phytoplankton-generated surfactants on air-sea gas exchange[J]. Journal of Geophysical Research: Oceans, 1990, 95(C3): 3337−3352. doi: 10.1029/JC095iC03p03337
    [49]
    Russell L M, Hawkins L N, Frossard A A, et al. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6652−6657. doi: 10.1073/pnas.0908905107
    [50]
    Tsai W T, Liu K K. An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux[J]. Journal of Geophysical Research: Oceans, 2003, 108(C4): 24.
    [51]
    Calleja M L, Duarte C M, Prairie Y T, et al. Evidence for surface organic matter modulation of air-sea CO2 gas exchange[J]. Biogeosciences, 2009, 6(6): 1105−1114. doi: 10.5194/bg-6-1105-2009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article views (507) PDF downloads(245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return