Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Liu Jie,Yang Rui,Wu Daidai, et al. Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin[J]. Haiyang Xuebao,2019, 41(8):13–25,doi:10.3969/j.issn.0253−4193.2019.08.002
Citation: Liu Jie,Yang Rui,Wu Daidai, et al. Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin[J]. Haiyang Xuebao,2019, 41(8):13–25,doi:10.3969/j.issn.0253− 4193.2019.08.002

Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin

doi: 10.3969/j.issn.0253-4193.2019.08.002
  • Received Date: 2018-12-04
  • Rev Recd Date: 2019-03-11
  • Available Online: 2021-04-21
  • Publish Date: 2019-08-25
  • In order to study the distribution of gas hydrate stable zones (GHSZ) in the Huaguang Sag of Qiongdongnan Basin, the important factors affecting GHSZ's thickness are quantitatively studied, including hydrostatic pressure, bottom water temperature, geothermal gradient and gas source composition. Then, it analyzes that the thickness distribution of the present methane GHSZ in Huaguang Sag. Finally, based on the historical evolution process of above various factors, the evolution of gas hydrate stabilization zone since 1.05 Ma BP in this area is preliminarily discussed. The results show that: (1) the gas source composition and seabed temperature have a great influence on the GHSZ in the study area, and the thickness of GHSZ has a good linear negative correlation with seabed temperature; (2) the temperature and pressure conditions for gas hydrate formation are available in the Huaguang Sag of Qiongdongnan Basin, where water depth is more than 600 m, the thickness of the hydrate stability zone is more than 100 m; the thickest GHSZ is located in the northwest of the study area, with a maximum thickness of more than 300 m; it is a favorable hydrate exploration area; (3) the methane GHSZ has gone through stable stage, relatively quick incrassation, gently changing stage, and quickly attenuating and recovery stage since 1.05 Ma BP. There is a good superposition relationship between the pockmark group and the sensitive area of GHSZ. Combined with previous research results, it is concluded that their formation is related to the decomposition and release of natural gas hydrate.
  • loading
  • [1]
    Majorowicz J, Safanda J, Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada[J]. Climate of the Past, 2012, 8(2): 667−682.
    [2]
    Riboulot V, Ker S, Sultan N, et al. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea[J]. Nature Communications, 2018, 9(1): 117. doi: 10.1038/s41467-017-02271-z
    [3]
    Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429−2445. doi: 10.1002/ggge.v18.7
    [4]
    宋海斌, 江为为, 张岭. 海洋天然气水合物的地球物理研究(Ⅳ): 双似海底反射[J]. 地球物理学进展, 2003, 18(3): 497−502. doi: 10.3969/j.issn.1004-2903.2003.03.027

    Song Haibin, Jiang Weiwei, Zhang Ling. Geophysical researches on marine gas hydrates (Ⅳ): double bottom simulating reflections[J]. Progress in Geophysics, 2003, 18(3): 497−502. doi: 10.3969/j.issn.1004-2903.2003.03.027
    [5]
    Zander T, Haeckel M, Berndt C, et al. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea[J]. Earth and Planetary Science Letters, 2017, 462: 15−25. doi: 10.1016/j.jpgl.2017.01.006
    [6]
    陈芳, 陆红锋, 刘坚, 等. 南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J]. 地球科学:中国地质大学学报, 2016, 41(10): 1619−1629.

    Chen Fang, Lu Hongfeng, Liu Jian, et al. Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China Sea[J]. Earth Science: Journal of China University of Geosciences, 2016, 41(10): 1619−1629.
    [7]
    叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学: 中国地质大学学报, 2013, 38(6): 1299−1308.

    Ye Liming, Chu Fengyou, Ge Qian, et al. A rapid gas hydrate dissociation in the Northern South China Sea since the Late Younger Dryas[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(6): 1299−1308.
    [8]
    金春爽, 汪集旸, 卢振权. 南海西沙海槽6 Ma以来天然气水合物稳定带演化初探[J]. 矿床地质, 2011, 30(1): 156−162. doi: 10.3969/j.issn.0258-7106.2011.01.013

    Jin Chunshuang, Wang Jiyang, Lu Zhenquan. A tentative discussion on the evolution of the natural gas hydrates stable zone in Xisha Trough of South China Sea since 6 Ma B.P.[J]. Mineral Deposits, 2011, 30(1): 156−162. doi: 10.3969/j.issn.0258-7106.2011.01.013
    [9]
    龚跃华, 杨胜雄, 王宏斌, 等. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报: 地球科学版, 2018, 48(4): 1030−1042.

    Gong Yuehua, Yang Shengxiong, Wang Hongbin, et al. Prospect of gas hydrate resources in Qiong Dongnan Basin[J]. Journal of Jilin University: Earth Science Edition, 2018, 48(4): 1030−1042.
    [10]
    陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3): 483−489. doi: 10.3321/j.issn:0001-5733.2004.03.018

    Chen Duofu, Li Xuxuan, Xia Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J]. Chinese Journal of Geophysics, 2004, 47(3): 483−489. doi: 10.3321/j.issn:0001-5733.2004.03.018
    [11]
    杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7): 2905−2914. doi: 10.6038/cjg2018L0374

    Yang Li, Liu Bin, Xu Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(7): 2905−2914. doi: 10.6038/cjg2018L0374
    [12]
    孙春岩, 吴能有, 牛滨华, 等. 南海琼东南盆地气态烃地球化学特征及天然气水合物资源远景预测[J]. 现代地质, 2007, 21(1): 95−100. doi: 10.3969/j.issn.1000-8527.2007.01.011

    Sun Chunyan, Wu Nengyou, Niu Binhua, et al. Geochemical characteristics of gaseous hydrocarbons and hydrate resource prediction in the Qiong-Dongnan Basin of the South China Sea[J]. Geoscience, 2007, 21(1): 95−100. doi: 10.3969/j.issn.1000-8527.2007.01.011
    [13]
    王秀娟, 吴时国, 王大伟, 等. 琼东南盆地多边形断层在流体运移和天然气水合物成藏中的作用[J]. 石油地球物理勘探, 2010, 45(1): 122−128.

    Wang Xiujuan, Wu Shiguo, Wang Dawei, et al. The role of polygonal faults in fluid migration and gas hydrate reservoir forming in Southeast Hainan Basin[J]. Oil Geophysical Prospecting, 2010, 45(1): 122−128.
    [14]
    梁金强, 王宏斌, 苏丕波, 等. 天然气水合物成藏的控制因素研究[M]. 北京: 地质出版社, 2018.

    Liang Jinqiang, Wang Hongbin, Su Pibo, et al. Study on Controlling Factors of Gas Hydrate Reservoir Formation[M]. Beijing: Geological Publishing House, 2018.
    [15]
    朱继田, 裴健翔, 孙志鹏, 等. 琼东南盆地新构造运动及其对晚期油气成藏的控制[J]. 天然气地球科学, 2011, 22(4): 649−656.

    Zhu Jitian, Pei Jianxiang, Sun Zhipeng, et al. Feature of neotectonism and its control on late hydrocarbon accumulation in Qiongdongnan Basin[J]. Natural Gas Geoscience, 2011, 22(4): 649−656.
    [16]
    Schimanski A, Stattegger K. Deglacial and Holocene evolution of the Vietnam shelf: stratigraphy, sediments and sea-level change[J]. Marine Geology, 2005, 214(4): 365−387. doi: 10.1016/j.margeo.2004.11.001
    [17]
    单竞男, 张功成, 吴景富, 等. 南海北缘琼东南盆地热结构与莫霍面温度[J]. 地球物理学报, 2011, 54(8): 2102−2109. doi: 10.3969/j.issn.0001-5733.2011.08.017

    Shan Jingnan, Zhang Gongcheng, Wu Jingfu, et al. Thermal structure and Moho temperature of Qiongdongnan Basin, northern margin of the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(8): 2102−2109. doi: 10.3969/j.issn.0001-5733.2011.08.017
    [18]
    杨涛涛, 吴敬武, 王彬, 等. 琼东南盆地华光凹陷构造特征及沉积充填[J]. 海洋地质与第四纪地质, 2012, 32(5): 13−18.

    Yang Taotao, Wu Jingwu, Wang Bin, et al. Structural pattern and sediment filling in Huaguang Sag of southern Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 13−18.
    [19]
    Zeng Lili, Wang Qiang, Xie Qiang, et al. Hydrographic field investigations in the Northern South China Sea by open cruises during 2004-2013[J]. Science Bulletin, 2015, 60(6): 607−615. doi: 10.1007/s11434-015-0733-z
    [20]
    Luo Min, Dale A W, Wallmann K, et al. Estimating the time of pockmark formation in the SW Xisha Uplift (South China Sea) using reaction-transport modeling[J]. Marine Geology, 2015, 364: 21−31. doi: 10.1016/j.margeo.2015.03.006
    [21]
    翟普强, 陈红汉, 谢玉洪, 等. 琼东南盆地深水区超压演化与油气运移模拟[J]. 中南大学学报:自然科学版), 2013, 44(10): 4187−4201.

    Zhai Puqiang, Chen Honghan, Xie Yuhong, et al. Modelling of evolution of overpressure system and hydrocarbon migration in deepwater area of Qiongdongnan Basin, South China Sea[J]. Journal of Central South University: Science and Technology, 2013, 44(10): 4187−4201.
    [22]
    郝诒纯, 陈平富, 万晓樵, 等. 南海北部莺歌海-琼东南盆地晚第三纪层序地层与海平面变化[J]. 现代地质, 2000, 14(3): 237−245. doi: 10.3969/j.issn.1000-8527.2000.03.001

    Hao Yichun, Chen Pingfu, Wan Xiaoqiao, et al. Late Tertiary sequence stratigraphy and sea level changes in Yinggehai-Qiongdongnan Basin[J]. Geoscience, 2000, 14(3): 237−245. doi: 10.3969/j.issn.1000-8527.2000.03.001
    [23]
    Shao Lei, Cui Yuchi, Qiao Peijun, et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 504−516. doi: 10.1016/j.palaeo.2017.07.006
    [24]
    Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156−1166. doi: 10.1126/science.235.4793.1156
    [25]
    余克服, 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6): 138−145. doi: 10.3321/j.issn:1005-2321.2009.06.015

    Yu Kefu, Chen Tegu. Beach sediments from northern South China Sea suggest high and oscillating sea level during the Late Holocene[J]. Earth Science Frontiers, 2009, 16(6): 138−145. doi: 10.3321/j.issn:1005-2321.2009.06.015
    [26]
    Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 2005, 437(7055): 125−128. doi: 10.1038/nature03975
    [27]
    Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288(5463): 128−133.
    [28]
    Jian Zhimin, Cheng Xinrong, Zhao Quanhong, et al. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years[J]. Science in China Series D: Earth Sciences, 2001, 44(10): 952−960. doi: 10.1007/BF02907088
    [29]
    黄宝琦, 翦知湣, 赵泉鸿, 等. 晚上新世以来南海北部深部水团演化[J]. 地球科学: 中国地质大学学报, 2005, 30(5): 529−533.

    Huang Baoqi, Jian Zhimin, Zhao Quanhong, et al. Variations in deep-water masses from the Northern South China Sea since the Late Pliocene[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(5): 529−533.
    [30]
    Siddall M, Hönisch B, Waelbroeck C, et al. Changes in deep Pacific temperature during the mid-Pleistocene transition and Quaternary[J]. Quaternary Science Reviews, 2010, 29(1/2): 170−181.
    [31]
    Shao Lei, Li Xuejie, Geng Jianhua, et al. Deep water bottom current deposition in the northern South China Sea[J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060−1066. doi: 10.1007/s11430-007-0015-y
    [32]
    Zahn R, Mix A C. Benthic foraminiferal δ18O in the ocean’s temperature-salinity-density field: constraints on Ice Age thermohaline circulation[J]. Paleoceanography, 1991, 6(1): 1−20. doi: 10.1029/90PA01882
    [33]
    He Lijuan, Wang Kelin, Xiong Liangping, et al. Heat flow and thermal history of the South China Sea[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3/4): 211−220.
    [34]
    米立军, 袁玉松, 张功成, 等. 南海北部深水区地热特征及其成因[J]. 石油学报, 2009, 30(1): 27−32. doi: 10.3321/j.issn:0253-2697.2009.01.005

    Mi Lijun, Yuan Yusong, Zhang Gongcheng, et al. Characteristics and genesis of geothermal field in deep-water area of the northern South China Sea[J]. Acta Petrolei Sinica, 2009, 30(1): 27−32. doi: 10.3321/j.issn:0253-2697.2009.01.005
    [35]
    宋洋, 赵长煜, 张功成, 等. 南海北部珠江口与琼东南盆地构造–热模拟研究[J]. 地球物理学报, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007

    Song Yang, Zhao Changyu, Zhang Gongcheng, et al. Research on tectono–thermal modeling for Qiongdongnan Basin and Pearl River Mouth Basin in the northern South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007
    [36]
    Wang Zhenfeng, Shi Xiaobin, Yang Jun, et al. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2014, 33(12): 107−117. doi: 10.1007/s13131-014-0580-9
    [37]
    施小斌, 王振峰, 蒋海燕, 等. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J]. 地球物理学报, 2015, 58(3): 939−952. doi: 10.6038/cjg20150320

    Shi Xiaobin, Wang Zhenfeng, Jiang Haiyan, et al. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin[J]. Chinese Journal of Geophysics, 2015, 58(3): 939−952. doi: 10.6038/cjg20150320
    [38]
    Nissen S S, Hayes D E, Yao Bochu, et al. Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B11): 22447−22483.
    [39]
    Collett T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971−1992.
    [40]
    Tréhu A M, Ruppel C, Holland M, et al. Gas hydrates in marine sediments: lessons from scientific ocean drilling[J]. Oceanography, 2006, 19(4): 124−142. doi: 10.5670/oceanog
    [41]
    Sloan E D, Koh C A, Sum A K. Gas hydrate stability and sampling: the future as related to the phase diagram[J]. Energies, 2010, 3(12): 1991−2000. doi: 10.3390/en3121991
    [42]
    Milkov A V, Claypool G E, Lee Y J, et al. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1007−1026. doi: 10.1016/j.gca.2004.08.021
    [43]
    苏新, 陈芳, 于兴河, 等. 南海陆坡中新世以来沉积物特性与气体水合物分布初探[J]. 现代地质, 2005, 19(1): 1−13. doi: 10.3969/j.issn.1000-8527.2005.01.001

    Su Xin, Chen Fang, Yu Xinghe, et al. A pilot study on Miocene through Holocene sediments from the continental slope of the South China Sea in correlation with possible distribution of gas hydrates[J]. Geoscience, 2005, 19(1): 1−13. doi: 10.3969/j.issn.1000-8527.2005.01.001
    [44]
    Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments[J]. Geochemical Journal, 1998, 32(3): 143−157. doi: 10.2343/geochemj.32.143
    [45]
    刘正华, 陈红汉. 琼东南盆地天然气成因类型及其烃源探讨[J]. 石油实验地质, 2011, 33(6): 639−644. doi: 10.3969/j.issn.1001-6112.2011.06.015

    Liu Zhenghua, Chen Honghan. Origin mechanism and source rock for natural gas in Qiongdongnan Basin, South China Sea[J]. Petroleum Geology & Experiment, 2011, 33(6): 639−644. doi: 10.3969/j.issn.1001-6112.2011.06.015
    [46]
    陈萍, 方念乔. 天然气体水合物在地质作用过程中变化的探讨[J]. 地球科学: 中国地质大学学报, 2002, 27(4): 441−445.

    Chen Ping, Fang Nianqiao. Study on changes of gas-hydrate under various geological processes[J]. Earth Science: Journal of China University of Geosciences, 2002, 27(4): 441−445.
    [47]
    董伟良, 黄保家. 东方1-1气田天然气组成的不均一性与幕式充注[J]. 石油勘探与开发, 1999, 26(2): 15−18. doi: 10.3321/j.issn:1000-0747.1999.02.005

    Dong Weiliang, Huang Baojia. Heterogeneity of natural gases and the episodic charging process: a case study for Dongfang 1-1 gas field, Yinggehai Basin[J]. Petroleum Exploration and Development, 1999, 26(2): 15−18. doi: 10.3321/j.issn:1000-0747.1999.02.005
    [48]
    Hao Fang, Li Sitian, Sun Yongchuan, et al. Geology, compositional heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdongnan basin, South China Sea[J]. AAPG Bulletin, 1998, 82(7): 1372−1384.
    [49]
    高媛, 曲希玉, 杨希冰, 等. 琼东南盆地乐东–陵水凹陷中新统储层流体包裹体特征及成藏期研究[J]. 海相油气地质, 2018, 23(1): 83−90. doi: 10.3969/j.issn.1672-9854.2018.01.010

    Gao Yuan, Qu Xiyu, Yang Xibing, et al. Characteristics of fluid inclusions and accumulation period of Miocene reservoir in Ledong–Lingshui sag of Qiongdongnan basin[J]. Marine Origin Petroleum Geology, 2018, 23(1): 83−90. doi: 10.3969/j.issn.1672-9854.2018.01.010
    [50]
    贾元琴, 胡沛青, 张铭杰, 等. 琼东南盆地崖城地区流体包裹体特征和油气充注期次分析[J]. 沉积学报, 2012, 30(1): 189−196.

    Jia Yuanqin, Hu Peiqing, Zhang Mingjie, et al. Characteristics of fluid inclusions and their constraints on timing of hydrocarbon filling in the Yacheng area of Qiongdongnan basin, South China[J]. Acta Sedimentologica Sinica, 2012, 30(1): 189−196.
    [51]
    Sun Qiliang, Wu Shiguo, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146−1156. doi: 10.1016/j.marpetgeo.2011.03.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (429) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return