Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Ren Guangbo, Guo Jie, Ma Yi, Luo Xudong. Oil spill detection and slick thickness measurement via UAV hyperspectral imaging[J]. Haiyang Xuebao, 2019, 41(5): 146-158. doi: 10.3969/j.issn.0253-4193.2019.05.014
Citation: Ren Guangbo, Guo Jie, Ma Yi, Luo Xudong. Oil spill detection and slick thickness measurement via UAV hyperspectral imaging[J]. Haiyang Xuebao, 2019, 41(5): 146-158. doi: 10.3969/j.issn.0253-4193.2019.05.014

Oil spill detection and slick thickness measurement via UAV hyperspectral imaging

doi: 10.3969/j.issn.0253-4193.2019.05.014
  • Received Date: 2018-05-06
  • Oil spill is a common problem faced by marine countries, but there is still no reliable and practical method for oil slick accurate identification and quantity measurement via remote sensing technology. Based on the UAV hyperspectral imaging experiment, methods of oil spill detection and thickness estimation are studied. In the experiment, the UAV hyperspectral remote sensing and field spectral data of oil spill with different quantities are obtained in an oil spill experiment tank of large outdoor flume under the condition of simulating real marine environment. Then the feature spectral bands based oil spill detection and oil slick thickness estimation models are found. At last we get the following conclusions:(1) 675 nm and 699 nm are the effective characteristic bands of oil spill detection, however, they have no detection capability for the very thin oil slick (thickness ≤ 5 μm), (2) 3 kinds of oil slick thickness estimation models witch are Normalized Difference Oil Spill Index (NDOSI) model, inverse proportion model and absorption line height model are proposed, in which the inverse ratio model is the only choice for thin and thick(thickness>50 μm) oil slick. For the medium thickness oil slick, the NDOSI model is the best choice, and the inverse scale model and the oil spill absorption baseline height model have better inversion ability, and in cloudy weather, the inverse scale model is the best.
  • loading
  • 许艳, 王海潮. 我国溢油应急综合实力显著提升[J]. 中国海事, 2007(6):12-15. Xu Yan, Wang Haichao. China's actual capability for emergency response against marine oil spill remarkably rose[J]. China Maritime Safety, 2007(6):12-15.
    顾磊, 张善杰. 我国油轮营运安全与防污染再思考[J]. 海运纵览, 2010(10):38-39. Gu Lei, Zhang Shanjie. Rethinking of oil tanker operation safety and pollution prevention in China[J]. Maritime Review, 2010(10):38-39.
    翟佳琦, 王剑强, 王雪滨. "桑吉"号爆燃沉没, 处理不当或对海洋生态造成灾难性破坏[J]. 人生与伴侣:综合版, 2018(2):4-7. Zhai Jiaqi, Wang Jianqiang, Wang Xuebin. Improper handling of "Sangji" sunk or catastrophic damage to marine ecosystem[J]. Life and Partner:A Comprehensive Edition, 2018(2):4-7.
    Lu Yingcheng, Li Xiang, Tian Qingjiu, et al. Progress in marine oil spill optical remote sensing:detected targets, spectral response characteristics, and theories[J]. Marine Geodesy, 2013, 36(3):334-346.
    Hodgins D O, Salvador S S, Tinis S E, et al. RADARSAT SAR for oil spill response[J]. Spill Science & Technology Bulletin, 1997, 3(4):241-246.
    Zheng Quanan, Yan Xiaohai, Liu W T, et al. Space shuttle observations of open ocean oil slicks[J]. Remote Sensing of Environment, 2001, 76(1):49-56.
    Brekke C, Solberg A H S. Oil spill detection by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 95(1):1-13.
    Keramitsoglou I, Cartalis C, Kiranoudis C T. Automatic identification of oil spills on satellite images[J]. Environmental Modelling & Software, 2006, 21(5):640-652.
    Garcia-Pineda O, Macdonald I, Hu Chuanmin, et al. Detection of floating oil anomalies from the deepwater horizon oil spill with synthetic aperture radar[J]. Oceanography, 2013, 26(2):124-137.
    Kepkay P E, Bugden J B C, Lee K, et al. Application of ultraviolet fluorescence spectroscopy to monitor oil-mineral aggregate formation[J]. Spill Science & Technology Bulletin, 2002, 8(1):101-108.
    方四安, 黄小仙, 尹达一, 等. 海洋溢油模拟目标的紫外反射特性研究[J]. 光谱学与光谱分析, 2010, 30(3):738-742. Fang Sian, Huang Xiaoxian, Yin Dayi, et al. Research on the ultraviolet reflectivity characteristic of simulative targets of oil spill on the ocean[J]. Spectroscopy and Spectral Analysis, 2010, 30(3):738-742.
    胡佳臣, 王迪峰. 基于遥感的海洋溢油监测方法[J]. 环境保护科学, 2014, 40(1):68-73. Hu Jiachen, Wang Difeng. Monitoring method of ocean oil spilling based on remote sensing[J]. Environmental Protection Science, 2014, 40(1):68-73.
    Asanuma I, Muneyama K, Sasaki Y, et al. Satellite thermal observation of oil slicks on the Persian Gulf[J]. Remote Sensing of Environment, 1986, 19(2):171-186.
    Cross A M. Monitoring marine oil pollution using AVHRR data:observations off the coast of Kuwait and Saudi Arabia during January 1991[J]. International Journal of Remote Sensing, 1992, 13(4):781-788.
    Salisbury J W, D'Aria D M, Sabins F F Jr. Thermal infrared remote sensing of crude oil slicks[J]. Remote Sensing of Environment, 1993, 45(2):225-231.
    Tseng W Y, Chiu L S. AVHRR observations of Persian gulf oil spills[C]//Proceedings of IGARSS'94-1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA, USA:IEEE, 1994.
    Innman A, Easson G, Asper V L, et al. The effectiveness of using MODIS products to map sea surface oil[C]//Oceans 2010 MTS/IEEE Seattle. Seattle, WA, USA:IEEE, 2010:1-5.
    Leifer I, Lehr W J, Simecek-Beatty D, et al. State of the art satellite and airborne marine oil spill remote sensing:Application to the BP Deepwater Horizon oil spill[J]. Remote Sensing of Environment, 2012, 124:185-209.
    Lu Yingcheng, Zhan Wenfeng, Hu Chuanmin. Detecting and quantifying oil slick thickness by thermal remote sensing:A ground-based experiment[J]. Remote Sensing of Environment, 2016, 181:207-217.
    Giammona C P, Binkley K S, Engelhardt F R, et al. Aerial image processing technology for emergency response[J]. Spill Science & Technology Bulletin, 1995, 2(1):47-54.
    Sugioka S I, Kojima T, Nakata K, et al. A numerical simulation of an oil spill in Tokyo Bay[J]. Spill Science & Technology Bulletin, 1999, 5(1):51-61.
    Hu Chaunmin, Müller-Karger F E, Taylor C, et al. MODIS detects oil spills in Lake Maracaibo, Venezuela[J]. EOS,Transcations American Geophysical Union, 2013, 84(33):313-319.
    Hu Chuanmin, Li Xiaofeng, Pichel W G, et al. Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery[J]. Geophysical Research Letters, 2009, 36(1):L01604.
    Chust G, Sagarminaga Y. The multi-angle view of MISR detects oil slicks under sun glitter conditions[J]. Remote Sensing of Environment, 2007, 107(1/2):232-239.
    Lu Yingcheng, Tian Qingjiu, Li Xiang. The remote sensing inversion theory of offshore oil slick thickness based on a two-beam interference model[J]. Science China Earth Sciences, 2011, 54(5):678-685.
    Lu Yingcheng, Tian Qingjiu, Wang Xinyuan, et al. Determining oil slick thickness using hyperspectral remote sensing in the Bohai Sea of China[J]. International Journal of Digital Earth, 2013, 6(1):76-93.
    Sun Shaojie, Hu Chuanmin, Lian Feng, et al. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill:Implications for spatial resolution requirements of remote sensors[J]. Marine Pollution Bulletin, 2016, 103(1/2):276-285.
    陆应诚, 田庆久, 宋鹏飞, 等. 海面油膜高光谱遥感信息提取[J]. 遥感学报, 2009, 13(4):686-695. Lu Yingcheng, Tian Qingjiu, Song Pengfei, et al. Study on extraction methods of offshore oil stick by hyperspectral remote sensing[J]. Journal of Remote Sensing, 2009, 13(4):686-695.
    陆应诚, 田庆久, 王晶晶, 等. 海面油膜光谱响应实验研究[J]. 科学通报, 2008, 53(9):1085-1088. Lu Yingcheng, Tian Qingjiu, Wang Jingjing, et al. Experimental study on spectral responses of offshore oil slick[J]. Chinese Science Bulletin, 2008, 53(24):3937-3941.
    李颖, 刘丙新, 兰国新, 等. 有冰海区油膜光谱特征研究[J]. 光谱学与光谱分析, 2010, 30(4):1018-1021. Li Ying, Liu Bingxin, Lan Xinguo, et al. Study on spectrum of oil film in ice-infested waters[J]. Spectroscopy and Spectral Analysis, 2010, 30(4):1018-1021.
    董士伟, 周子勇, 文百红. 基于EMD与神经网络的油膜高光谱数据特征提取[J]. 遥感技术与应用, 2010, 25(2):221-226. Dong Shiwei, Zhou Ziyong, Wen Baihong. Feature extraction of offshore oil slick from hyperspectral data based on EMD and neural network[J]. Remote Sensing Technology and Application, 2010, 25(2):221-226.
    Plaza J, Pérez R, Plaza A, et al. Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data[C]//Proceedings of SPIE 5995, Chemical and Biological Standoff Detection Ⅲ. Boston, MA, United States:SPIE, 2005:79-86.
    陆应诚, 田庆久, 齐小平, 等. 海面甚薄油膜光谱响应研究与分析[J]. 光谱学与光谱分析, 2009, 29(4):986-989. Lu Yingcheng, Tian Qingjiu, Qi Xiaoping, et al. Spectral response analysis of offshore thin oil slicks[J]. Spectroscopy and Spectral Analysis, 2009, 29(4):986-989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1245) PDF downloads(368) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return