Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Teng Chenkemin, Yue Xianchang, Wu Xiongbin, Wang Shaohua, Huang Qihua, Zhang Lan. Impacts of wind data on the hindcast of wave height simulated by SWAN model on the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(5): 59-69. doi: 10.3969/j.issn.0253-4193.2019.05.006
Citation: Teng Chenkemin, Yue Xianchang, Wu Xiongbin, Wang Shaohua, Huang Qihua, Zhang Lan. Impacts of wind data on the hindcast of wave height simulated by SWAN model on the Taiwan Strait[J]. Haiyang Xuebao, 2019, 41(5): 59-69. doi: 10.3969/j.issn.0253-4193.2019.05.006

Impacts of wind data on the hindcast of wave height simulated by SWAN model on the Taiwan Strait

doi: 10.3969/j.issn.0253-4193.2019.05.006
  • Received Date: 2018-06-13
  • Using the SWAN model, the wave fields on the Taiwan Strait with two common wind field data including Cross-Calibrated Multi-Platform (CCMP) and ASCAT-Based Daily (DASCAT) are simulated and analyzed in this paper. A three-month period result during the northeast monsoon is compared with the buoy measured sequential wave height result. The mean of the deviations between them is less than 0.33 m and the root mean square (RMS) value of the deviations is no larger than 0.59 m. The deviations become larger when the buoy measured wave height is greater than 3.5 m or less than 1 m. And the simulation result of 6 h resolution wind field data agrees better with the buoy measured wave height than the 24 h resolution. Among the simulations with the input of the CCMP wind data with 6 h and 24 h resolution and the DASCAT wind data with 24 h resolution, the spatial cross correlation coefficient between either two results are no less than 0.90, the spatial mean of the deviations between either two results is less than 0.32 m and the RMS value of the deviations is less than 0.40 m.
  • loading
  • 齐义泉, 朱伯承, 施平, 等. WWATCH模式模拟南海海浪场的结果分析[J]. 海洋学报, 2003, 25(4):1-9. Qi Yiquan, Zhu Bocheng, Shi Ping, et al. Analysis of significant wave heights from WWATCH and TOPEX/poseidon altimetry[J]. Haiyang Xuebao, 2003, 25(4):1-9.
    卢雄赳, 付微, 吴雄斌, 等. 改进的非相参导航雷达探测有效波高算法[J]. 科学技术与工程, 2014, 14(35):72-75. Lu Xiongjiu, Fu Wei, Wu Xiongbin, et al. Improved algorithm of detecting significant wave height based on the incoherent navigation radar[J]. Science Technology and Engineering, 2014, 14(35):72-75.
    Berkhoff J C W. Computation of combined refraction-diffraction[C]//Proceeding of 13th Coastal Engineering Conference ASCE. 1972:796-814.
    Nwogu O. Alternative form of boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(6):618-638.
    Xu Fumin, Yan Yixin, Zhang Changkuan, et al. Wave numerical model for shallow water[J]. China Ocean Engineering, 2000, 14(2):193-202.
    Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. Model description and validation[J]. Journal of Geophysical Research:Oceans, 1999, 104(C4):7649-7666.
    Rogers W E, Kaihatu J M, Petit H A H, et al. Diffusion reduction in an arbitrary scale third generation wind wave model[J]. Ocean Engineering, 2002, 29(11):1357-1390.
    Umesh P A, Swain J. Inter-comparisons of SWAN hindcasts using boundary conditions from WAM and WWⅢ for northwest and northeast coasts of India[J]. Ocean Engineering, 2018, 156:523-549.
    梁书秀, 孙昭晨, 尹洪强, 等. 基于SWAN模式的南海台风浪推算的影响因素分析[J]. 海洋科学进展, 2015, 33(1):19-30. Liang Shuxiu, Sun Zhaochen, Yin Hongqiang, et al. Influence factors of typhoon wave forecast in the South China Sea by SWAN model[J]. Advances in Marine Science, 2015, 33(1):19-30.
    张鹏, 陈晓玲, 陆建忠, 等. 基于CCMP卫星遥感海面风场数据的渤海风浪模拟研究[J]. 海洋通报, 2011, 30(3):266-271. Zhang Peng, Chen Xiaoling, Lu Jianzhong, et al. Research on wave simulation of Bohai Sea based on the CCMP remotely sensed sea winds[J]. Marine Science Bulletin, 2011, 30(3):266-271.
    Mao Miaohua, Van Der Westhuysen A J, Xia Meng, et al. Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN[J]. Journal of Geophysical Research:Oceans, 2016, 121(6):3836-3865.
    Huang Yong, Weisberg R H, Zheng Lianyuan, et al. Gulf of Mexico hurricane wave simulations using SWAN:bulk formula-based drag coefficient sensitivity for Hurricane Ike[J]. Journal of Geophysical Research:Oceans, 2013, 118(8):3916-3938.
    旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5):44-53. Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. Haiyang Xuebao, 2015, 37(5):44-53.
    陈剑桥. 2008年冬季台湾海峡及其邻近海域QuikSCAT卫星遥感风场的检验及应用分析[J]. 台湾海峡, 2011, 30(2):158-164. Chen Jianqiao. Validation of QuikSCAT data and their application in the analysis of wind characteristics of Taiwan Strait and its adjacent waters in winter 2008[J]. Journal of Oceanography in Taiwan Strait, 2011, 30(2):158-164.
    陈德文, 李雪丁. 台湾海峡及邻近海域冷空气过程风-浪关系的观测分析[J]. 海洋预报, 2018, 35(2):44-52. Chen Dewen, Li Xueding. Analysis of relationship between wind and wave during the period of cold air in Taiwan Strait and its adjacent waters based on observed data[J]. Marine Forecasts, 2018, 35(2):44-52.
    袁凯瑞, 商少平, 谢燕双, 等. 台湾海峡台风浪的数值模拟[J]. 厦门大学学报:自然科学版, 2014, 53(3):413-417. Yuan Kairui, Shang Shaoping, Xie Yanshuang, et al. The simulation of typhoon waves in Taiwan Strait[J]. Journal of Xiamen University:Natural Science, 2014, 53(3):413-417.
    赵昊辰, 尹宝树, 冯兴如, 等. 台湾附近海域超强台风南玛都期间风暴潮对海浪影响的数值研究[J]. 海洋科学, 2015, 39(3):127-134. Zhao Haochen, Yin Baoshu, Fen Xingru, et al. Numerical study of influence of surge and wave interaction on waves in waters surrounding Taiwan[J]. Marine Sciences, 2015, 39(3):127-134.
    Atlas R, Hoffman R N, Ardizzone J, et al. Development of a new cross-calibrated, multi-platform (CCMP) ocean surface wind product[C]//AMS 13th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS). 2009.
    Bentamy A, Fillon D C. Gridded surface wind fields from Metop/ASCAT measurements[J]. International Journal of Remote Sensing, 2012, 33(6):1729-1754.
    Verspeek J, Stoffelen A, Portabella M, et al. Validation and calibration of ASCAT using CMOD5.n[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(1):386-395.
    应王敏, 郑桥, 朱陈陈, 等. 基于SWAN模式的"灿鸿"台风浪数值模拟[J]. 海洋科学, 2017, 41(4):108-117. Ying Wangmin, Zheng Qiao, Zhu Chenchen, et al. Numerical simulation of "CHAN-HOM" typhoon waves using SWAN mode[J]. Marine Sciences, 2017, 41(4):108-117.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (666) PDF downloads(222) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return