Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Ding Ya'nan, Jing Chunsheng, Qiu Yun. Temporal and spatial characteristics of pinch-off rings in the Kuroshio Extension region[J]. Haiyang Xuebao, 2019, 41(5): 47-58. doi: 10.3969/j.issn.0253-4193.2019.05.005
Citation: Ding Ya'nan, Jing Chunsheng, Qiu Yun. Temporal and spatial characteristics of pinch-off rings in the Kuroshio Extension region[J]. Haiyang Xuebao, 2019, 41(5): 47-58. doi: 10.3969/j.issn.0253-4193.2019.05.005

Temporal and spatial characteristics of pinch-off rings in the Kuroshio Extension region

doi: 10.3969/j.issn.0253-4193.2019.05.005
  • Received Date: 2018-05-16
  • This study examined the spatial distribution characteristics, motion properties, seasonal, interannual and decadal variations of oceanic rings shed from the Kuroshio Extension (KE) jet using AVISO satellite altimeter observations from January 1993 to December 2015. The results show that 242 cyclones and 276 anticyclones are detected in the past 23 years, and pinch-off rings mostly distribute in the region west of the Shatsky Rise. According to the spatial distribution of the ring formations in the KE region, there are two high value regions of cyclonic rings. One is located at the upstream region between 144°-146°E around the steady meander of the KE jet, the other is located at 156°E west of the Shatsky Ridge. There are two high value regions of anticyclonic rings, one located at downstream region west of the Shatsky Ridge and the other located at 148°E. These pinched-off rings in both the upstream and downstream regions generally propagated westward, but about 88% of the rings are reabsorbed by the jet. The number of ring formations show substantial interannual to decadal-like variability. In the upstream and downstream KE region, decadal-like and interannual variability is dominant, respectively. In the upstream region, these fluctuations of the ring formations are negatively correlated with the strength of the KE jet. In terms of seasonal variation, the most rings formed in summer, and the least in winter.
  • loading
  • Qiu B. Kuroshio extension variability and forcing of the Pacific decadal oscillations:responses and potential feedback[J]. Journal of Physical Oceanography, 2003, 33(12):2465-2482.
    张笑, 贾英来, 沈辉, 等. 黑潮延伸体区域海洋涡旋研究进展[J]. 气候变化研究快报, 2013, 2(1):1-8. Zhang Xiao, Jia Yinglai, Shen Hui, et al. Review on mesoscale eddy studies in the Kuroshio extension region[J]. Climate Change Research Letters, 2013, 2(1):1-8.
    Wyrtki K, Magaard L, Hager J. Eddy energy in the oceans[J]. Journal of Geophysical Research, 1976, 81(15):2641-2646.
    Stammer D. On eddy characteristics, eddy transports, and mean flow properties[J]. Journal of Physical Oceanography, 1998, 28(4):727-739.
    Qiu Bo, Chen Shuiming. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J]. Journal of Physical Oceanography, 2005, 35(4):458-473.
    Aoki K, Minobe S, Tanimoto Y, et al. Southward eddy heat transport occurring along southern flanks of the Kuroshio extension and the gulf stream in a 1/10° global ocean general circulation model[J]. Journal of Physical Oceanography, 2013, 43(9):1899-1910.
    Olson D B. Rings in the ocean[J]. Annual Review of Earth and Planetary Sciences, 1991, 19(1):283-311.
    Waterman S, Hoskins B J. Eddy shape, orientation, propagation, and mean flow feedback in western boundary current jets[J]. Journal of Physical Oceanography, 2013, 43(8):1666-1690.
    Kawamura H, Mizuno K, Toba Y. Formation process of a warm-core ring in the Kuroshio-Oyashio frontal zone-December 1981-October 1982[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1986, 33(11/12):1617-1640.
    Oka E, Suga T, Sukigara C, et al. "Eddy resolving" observation of the north pacific subtropical mode water[J]. Journal of Physical Oceanography, 2010, 41(4):666-681.
    Yasuda I, Okuda K, Hirai M. Evolution of a Kuroshio warm-core ring-variability of the hydrographic structure[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1992, 39(S1):S131-S161.
    Qiu Bo, Chen Shuiming, Hacker P. Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio extension system study (KESS)[J]. Journal of Physical Oceanography, 2007, 37(4):982-1000.
    Sugimoto S, Hanawa K. Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio confluence region:influences of warm eddies detached from the Kuroshio extension[J]. Journal of Climate, 2011, 24(24):6551-6561.
    Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):L15606.
    Itoh S, Yasuda I. Characteristics of mesoscale eddies in the kuroshio-oyashio extension region detected from the distribution of the sea surface height anomaly[J]. Journal of Physical Oceanography, 2010, 40(5):1018-1034.
    Kouketsu S, Tomita H, Oka E, et al. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific[J]. Journal of Oceanography, 2012, 68(1):63-77.
    Mcwilliams J C, Flierl G R. On the evolution of isolated, nonlinear vortices[J]. Journal of Physical Oceanography, 1979, 9(9):1155-1182.
    Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216.
    Cushman-Roisin B. Trajectories in gulf stream meanders[J]. Journal of Geophysical Research:Oceans, 1993, 98(C2):2543-2554.
    McGillicuddy D J Jr, Anderson L A, Bates N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J]. Science, 2007, 316(5827):1021-1026.
    Sasaki Y N, Minobe S. Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region[J]. Journal of Oceanography, 2015, 71(5):499-509.
    Deser C, Alexander M, Timlin M S. Evidence for a wind-driven intensification of the Kuroshio current extension from the 1970s to the 1980s[J]. Journal of Climate, 1999, 12(6):1697-1706.
    Taguchi B, Xie S P, Schneider N, et al. Decadal variability of the Kuroshio extension:observations and an eddy-resolving model hindcast[J]. Journal of Climate, 2007, 20(3):673-691.
    Sasaki Y N, Minobe S, Schneider N. Decadal response of the Kuroshio extension jet to Rossby waves:observation and thin-jet theory[J]. Journal of Physical Oceanography, 2013, 43(2):442-456.
    Qiu Bo, Chen Shuiming. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11):2090-2103.
    王鼎琦, 方国洪, 邱婷. 吕宋海峡黑潮脱落涡旋的特征分析[J]. 海洋与湖沼, 2017, 48(4):672-681. Wang Dingqi, Fang Guohong, Qiu Ting. The characteristics of eddies shedding from Kuroshio in the Luzon Strait[J]. Oceanologia et Limnologia Sinica, 2017, 48(4):672-681.
    杨光. 西北太平洋中尺度涡旋研究[D]. 青岛:中国科学院海洋研究所, 2013. Yang Guang. A study on the mesoscale eddies in the northwestern Pacific Ocean[D]. Qingdao:Insitude of Oceanology, Chinese Academy of Sciences, 2013.
    Dickey T D, Nencioli F, Kuwahara V S, et al. Physical and bio-optical observations of oceanic cyclones west of the island of Hawai'i[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2008, 55(10/13):1195-1217.
    祖永灿, 方越, 高晓倩, 等. 北太平洋中尺度涡季节和年际变化的统计分析[J]. 海洋科学进展, 2016, 34(2):197-206. Zu Yongcan, Fang Yue, Gao Xiaoqian, et al. Seasonal and interannual variation of mesoscale eddies in the North Pacific Ocean:a statistical analysis[J]. Advance in Marine Science, 2016, 34(2):197-206.
    Chelton D B, Schlax M G. The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets[J]. Journal of Atmospheric & Oceanic Technology, 2003, 20(9):1276-1302.
    崔伟, 王伟, 马毅, 等. 基于1993-2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2):16-28. Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993-2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2):16-28.
    Nakano H, Tsujino H, Sakamoto K. Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model[J]. Journal of Geophysical Research:Oceans, 2013, 118(10):5461-5488.
    Chao S Y. Zonal jets over topography on a beta-plane, with applications to the Kuroshio extension over the shatsky rise[J]. Journal of Physical Oceanography, 1994, 24(7):1512-1531.
    Hurlburt H E, Metzger E J. Bifurcation of the Kuroshio extension at the shatsky rise[J]. Journal of Geophysical Research:Oceans, 1998, 103(C4):7549-7566.
    Nishihama Y, Ikeda M. Instability processes of mesoscale features in the Kuroshio Extension reproduced through assimilation of altimeter data into a quasi-geostrophic model using the variational method[J]. Journal of Oceanography, 2013, 69(2):135-146.
    Fujii Y, Nakano T, Usui N, et al. Pathways of the North Pacific Intermediate Water identified through the tangent linear and adjoint models of an ocean general circulation model[J]. Journal of Geophysical Research:Oceans, 2013, 118(4):2035-2051.
    Chen Gengxin, Hou Yujun, Chu Xiaoqing. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research:Oceans, 2011, 116(C6):C06018.
    Scharffenberg M G, Stammer D. Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data[J]. Journal of Geophysical Research:Oceans, 2010, 115(C2):C02008.
    Tai C K, White W B. Eddy variability in the Kuroshio extension as revealed by geosat altimetry:energy propagation away from the jet, Reynolds stress, and seasonal cycle[J]. Journal of Physical Oceanography, 1990, 20(11):1761-1777.
    Qiu B. Recirculation and seasonal change of the Kuroshio from altimetry observations[J]. Journal of Geophysical Research:Oceans, 1992, 97(C11):17801-17811.
    Greatbatch R J, Zhai Xiaoming, Kohlmann J D, et al. Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio extensions as revealed by satellite data[J]. Ocean Dynamics, 2010, 60(3):617-628.
    Mizuno K, White W B. Annual and interannual variability in the Kuroshio current system[J]. Journal of Physical Oceanography, 1983, 13(10):1847-1867.
    Tatebe H, Yasuda I. Seasonal axis migration of the upstream Kuroshio extension associated with standing oscillations[J]. Journal of Geophysical Research:Oceans, 2001, 106(C8):16685-16692.
    Bush A B G, Mcwilliams J C, Peltier W R. The formation of oceanic eddies in symmetric and asymmetric jets. Part Ⅰ:early time evolution and bulk eddy transports[J]. Journal of Physical Oceanography, 2010, 25(9):1959-1979.
    Yang Yang, Liang X S, Qiu Bo, et al. On the decadal variability of the eddy kinetic energy in the Kuroshio extension[J]. Journal of Physical Oceanography, 2017, 47(5):1169-1187.
    Qiu Bo, Chen Shuiming. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2010, 57(13/14):1098-1110.
    Qiu Bo, Chen Shuiming, Wu Lixin, et al. Wind-versus eddy-forced regional sea level trends and variability in the North Pacific Ocean[J]. Journal of Climate, 2015, 28(4):1561-1577.
    Qiu Bo, Chen Shuiming, Schneider N, et al. A coupled decadal prediction of the dynamic state of the Kuroshio extension system[J]. Journal of Climate, 2014, 27(4):1751-1764.
    Liang X S, Robinson A R. Localized multi-scale energy and vorticity analysis:Ⅱ. Finite-amplitude instability theory and validation[J]. Dynamics of Atmospheres and Oceans, 2007, 44(2):51-76.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1027) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return