Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Liu Bo, Chen Linlin, Li Baoquan, Hou Xiyong, Feng Guanghai, Li Xiaowei, Li Bingjun, Wang Yujue. Carbon and nitrogen stable isotopes variations in different tissues of macrobenthos in the intertidal zone[J]. Haiyang Xuebao, 2019, 41(4): 74-82. doi: 10.3969/j.issn.0253-4193.2019.04.007
Citation: Liu Bo, Chen Linlin, Li Baoquan, Hou Xiyong, Feng Guanghai, Li Xiaowei, Li Bingjun, Wang Yujue. Carbon and nitrogen stable isotopes variations in different tissues of macrobenthos in the intertidal zone[J]. Haiyang Xuebao, 2019, 41(4): 74-82. doi: 10.3969/j.issn.0253-4193.2019.04.007

Carbon and nitrogen stable isotopes variations in different tissues of macrobenthos in the intertidal zone

doi: 10.3969/j.issn.0253-4193.2019.04.007
  • Received Date: 2018-04-16
  • Rev Recd Date: 2018-12-05
  • The technique of stable isotope analysis has been widely applied for the field of food web studies in recent years. However, few researches concerned about the impacts of different tissues used for analysis on the food web building. With the purpose of accuracy and comparability in the food web studies, the sampling tissues should be standardized. In this study, 10 macrobenthic species from the intertidal zone of the Yellow River Delta and Yantai were chosen as the target object to test the isotopic characteristic variations of δ13C and δ15N at different body parts (whole bodies, muscles and gills). Our results show that δ13C and δ15N values vary in different sampling tissues for most species, which indicates the different tissues used for analysis impact the food web building. To achieve a more accuracy and comparability result, suitable tissue should be primarily chosen for their food sources and trophic levels analysis. Namely, when the organism as predator, their muscles should first be chosen, for examples, adductor and foot muscles of mollusks, leg muscles of crabs and back muscles of fishes; when the organism as prey, most of their tissues, except for indigestible part (for polychaetes, the digestive tract contents should be removed) should be chosen for analysis on food sources and trophic levels of the secondary consumer, for example, whole soft parts of mollusks, the mixture of muscles and gills of crabs.
  • loading
  • Ramírez F, Navarro J, Afán I, et al. Adapting to a changing world:unraveling the role of man-made habitats as alternative feeding areas for Slender-Billed Gull (Chroicocephalus Genei)[J]. PLoS One, 2012, 7(10):e47551.
    Park H J, Kang H Y, Park T H, et al. Comparative trophic structures of macrobenthic food web in two macrotidal wetlands with and without a dike on the temperate coast of Korea as revealed by stable isotopes[J]. Marine Environmental Research, 2017, 131:134-145.
    Boecklen W J, Yarnes C T, Cook B A, et al. On the use of stable isotopes in trophic ecology[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42:411-440.
    Willis T V, Wilson K A, Johnson B J. Diets and stable isotope derived food web structure of fishes from the inshore Gulf of Maine[J]. Estuaries and Coasts, 2017, 40(3):889-904.
    Linnebjerg J F, Hobson K A, Fort J, et al. Deciphering the structure of the West Greenland marine food web using stable isotopes (δ13C, δ15N)[J]. Marine Biology, 2016, 163:230.
    陈展彦, 武海涛, 王云彪. 基于稳定同位素的湿地食物源判定和食物网构建研究进展[J]. 应用生态学报, 2017, 28(7):2389-2398. Chen Zhanyan, Wu Haitao, Wang Yunbiao, et al. Research progress on food sources and food web structure of wetlands based on stable isotopes[J]. Chinese Journal of Applied Ecology, 2017, 28(7):2389-2398.
    Post D M. Using stable isotopes to estimate trophic position:models, methods, and assumptions[J]. Ecology, 2002, 83(3):703-718.
    Bond A L, Jones I L. A practical introduction to stable-isotope analysis for seabird biologists:approaches, cautions and caveats[J]. Marine Ornithology, 2009, 37(3):183-188.
    Cherel Y, Connan M, Jaeger A, et al. Seabird year-round and historical feeding ecology:Blood and feather δ13C and δ15N values document foraging plasticity of small sympatric petrels[J]. Marine Ecology Progress Series, 2014, 505:267-280.
    Robbins C T, Felicetti L A, Sponheimer M. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds[J]. Oecologia, 2005, 144(4):534-540.
    Montanari S, Amato G. Discrimination factors of carbon and nitrogen stable isotopes from diet to hair and scat in captive tigers (Panthera tigris) and snow leopards (Uncia uncia)[J]. Rapid Communications in Mass Spectrometry, 2015, 29(11):1062-1068.
    Storm-Suke A, Wassenaar LI, Nol E, et al. The influence of metabolic rate on the contribution of stable-hydrogen and oxygen isotopes in drinking water to quail blood plasma and feathers[J]. Functional Ecology, 2012, 26(5):1111-1119.
    Devries M S, Del Rio C M, Tunstall T S, et al. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans[J]. PLoS One, 2015, 10(4):e0122334.
    Ben-David M, Schell D M. Mixing models in analyses of diet using multiple stable isotopes:a response[J]. Oecologia, 2001, 127(2):180-184.
    Phillips D L, Inger R, Bearhop S, et al. Best practices for use of stable isotope mixing models in food-web studies[J]. Canadian Journal of Zoology, 2014, 92(10):823-835.
    宁加佳, 杜飞雁, 李亚芳, 等. 红海湾远海梭子蟹Portunus pelagicus的食物组成及营养位置分析[J]. 海洋学报, 2016, 38(10):62-69. Ning Jiajia, Du Feiyan, Li Yafang, et al. Dietary composition and trophic position of blue swimmer crab (Portunus pelagicus) in Honghai Bay[J]. Haiyang Xuebao, 2016, 38(10):62-69.
    Britton J R, Busst G M A. Stable isotope discrimination factors of omnivorous fishes:influence of tissue type, temperature, diet composition and formulated feeds[J]. Hydrobiologia, 2018, 808(1):219-234.
    Grey J, Graham C T, Britton J R, et al. Stable isotope analysis of archived roach (Rutilus rutilus) scales for retrospective study of shallow lake responses to nutrient reduction[J]. Freshwater Biology, 2009, 54(8):1663-1670.
    Tronquart N H, Mazeas L, Reuilly-Manenti L, et al. Fish fins as non-lethal surrogates for muscle tissues in freshwater food web studies using stable isotopes[J]. Rapid Communications in Mass Spectrometry, 2012, 26(14):1603-1608.
    Cherel Y, Ducatez S, Fontaine C, et al. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands[J]. Marine Ecology Progress, 2008, 370:239-247.
    Guelinckx J, Maes J, Van Den Driessche P, et al. Changes in δ13C and δ15N in different tissues of juvenile sand goby Pomatoschistus minutus:a laboratory diet-switch experiment[J]. Marine Ecology Progress, 2007, 341:205-215.
    蔡德陵, 洪旭光, 毛兴华, 等. 崂山湾潮间带食物网结构的碳稳定同位素初步研究[J]. 海洋学报, 2001, 23(4):41-47. Cai Deling, Hong Xuguang, Mao Xinghua, et al. Preliminary studies on trophic structure of tidal zone in the Laoshan Bay by using carbon stable isotopes[J]. Haiyang Xuebao, 2001, 23(4):41-47.
    康斌, 线薇微, 武云飞. 不同摄食水平条件下鮻的碳收支研究[J]. 中国海洋大学学报(自然科学版), 2007, 37(2):247-250. Kang Bin, Xian Weiwei, Wu Yunfei. Carbon budget of Redlip Mullet (Liza haematocheila T. & S.) under different feeding rates[J]. Periodical of Ocean University of China, 2007, 37(2):247-250.
    孙丰梅, 于洪侠, 石光雨, 等. 牛组织中稳定性同位素碳、氮随饲料变化的研究[J]. 分析测试学报, 2009, 28(3):310-314. Sun Fengmei, Yu Hongxia, Shi Guangyu, et al. Variational regularities of carbon and nitrogen stable isotopes in cattle tissues with feedstuff composition[J]. Journal of Instrumental Analysis, 2009, 28(3):310-314.
    张妙, 陈新军, 陈亚, 等. 黄颡鱼不同组织碳氮稳定同位素的周转与分馏研究[J]. 上海海洋大学学报, 2016, 25(6):822-830. Zhang Miao, Chen Xinjun, Chen Ya, et al. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of Pelteobagrus fulvidraco[J]. Journal of Shanghai Ocean University, 2016, 25(6):822-830.
    Gómez C, Larsen T, Popp B, et al. Assessing seasonal changes in animal diets with stable-isotope analysis of amino acids:a migratory boreal songbird switches diet over its annual cycle[J]. Oecologia, 2018, 187(1):1-13.
    Matley J K, Fisk A T, Tobin A J, et al. Diet-tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of an adult predatory coral reef fish, Plectropomus leopardus[J]. Rapid Communications in Mass Spectrometry, 2016, 30(1):29-44.
    Barquete V, Strauss V, Ryan P G. Stable isotope turnover in blood and claws:A case study in captive African Penguins[J]. Journal of Experimental Marine Biology and Ecology, 2013, 448:121-127.
    Nardoto G B, De Godoy P B, De Barros Ferraz E S, et al. Stable carbon and nitrogen isotopic fractionation between diet and swine tissues[J]. Scientia Agricola, 2006, 63(6):579-582.
    De S S, Balcaen A, Claeys E, et al. Stable carbon isotope analysis of different tissues of beef animals in relation to their diet[J]. Rapid Communications in Mass Spectrometry, 2004, 18(11):1227-1232.
    Suring E, Wing S R. Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias):consequences for ecological studies[J]. Journal of Experimental Marine Biology and Ecology, 2009, 370(1/2):56-63.
    Post D M, Layman C A, Arrington D A, et al. Getting to the fat of the matter:models, methods and assumptions for dealing with lipids in stable isotope analyses[J]. Oecologia, 2007, 152(1):179-189.
    Deniro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis[J]. Science, 1977, 197(4300):261-263.
    Pinnegar J K, Polunin N V C. Differential fractionation of δ13C and δ15N among fish tissues:implications for the study of trophic interactions[J]. Functional Ecology, 1999, 13(2):225-231.
    Focken U, Becker K. Metabolic fractionation of stable carbon isotopes:implications of different proximate compositions for studies of the aquatic food webs using δ13C data[J]. Oecologia, 1998, 115(3):337-343.
    佟蕊, 成永旭, 吴旭干, 等. 3种不同栖息环境下蟹鳃的超微结构、脂类组成及含量的比较[J]. 水产学报, 2011, 35(9):1426-1435. Tong Rui, Chen Yongxu, Wu Xugan, et al. Ultrastructure and lipid profile of gills in three crabs living in different habitats[J]. Journal of Fisheries of China, 2011, 35(9):1426-1435.
    Reich K J, Bjorndal K A, Del Rio C M. Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm[J]. Oecologia, 2008, 155(4):651-663.
    Gerringer M E, Popp B N, Linley T D, et al. Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis[J]. Deep Sea Research Part I Oceanographic Research Papers, 2017, 121:110-120.
    Mcmahon K W, Mccarthy M D. Embracing variability in amino acid δ15N fractionation:mechanisms, implications, and applications for trophic ecology[J]. Ecosphere, 2016, 7(12):e01511.
    曾庆飞, 孔繁翔, 张恩楼, 等. 稳定同位素技术应用于水域食物网的方法学研究进展[J]. 湖泊科学, 2008, 20(1):13-20. Zeng Qingfei, Kong Fanxiang, Zhang Enlou, et al. Assessment of sample processing methods for stable isotope analysis of aquatic food webs[J]. Journal of Lake Sciences, 2008, 20(1):13-20.
    Gillikin D P, Lorrain A, Meng L, et al. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells[J]. Geochimica et Cosmochimica Acta, 2007, 71(12):2936-2946.
    闫慧, 侯刚. 双壳类壳体碳同位素的负漂移现象:生命效应存在的证据[J]. 热带地理, 2011, 31(6):545-548. Yan Hui, Hou Gang. Ontogenic decreases of δ13C in bivalve shells:evidence of vital effect[J]. Tropical Geography, 2011, 31(6):545-548.
    李彦艳, 张闪闪, 任国栋. 甲壳动物、昆虫、真菌中甲壳素的提取进展[J]. 食品研究与开发, 2015, 36(7):122-126. Li Yanyan, Zhang Shanshan, Ren Guodong. The progress of chitin extracted from crustaceans, insect and Fungi[J]. Food Research and Development, 2015, 36(7):122-126.
    Wolf N, Newsome S D, Peters J, et al. Variability in the routing of dietary proteins and lipids to consumer tissues influences tissue-specific isotopic discrimination[J]. Rapid Communications in Mass Spectrometry, 2015, 29(15):1448-1456.
    Andrade C, Ríos C, Gerdes D, et al. Trophic structure of shallow-water benthic communities in the sub-Antarctic Strait of Magellan[J]. Polar Biology, 2016, 39(12):2281-2297.
    王荦, 杜双成, 杨婷越, 等. 应用稳定同位素技术评价大连近岸海域食物网营养结构[J]. 生态学杂志, 2017, 36(5):1452-1457. Wang Luo, Du Shuangcheng, Yang Tingyue, et al. Using stable isotopes to evaluate food web structure in Dalian coastal water[J]. Chinese Journal of Ecology, 2017, 36(5):1452-1457.
    Vander Zanden M J, Rasmussen J B. Variation in δ15N and δ13C trophic fractionation:Implications for aquatic food web studies[J]. Limnology and Oceanography, 2001, 46(8):2061-2066.
    廖建基, 郑新庆, 杜建国, 等. 基于氮稳定同位素的九龙江口鱼类营养级研究[J]. 海洋学报, 2015, 372):93-103. Liao Jianji, Zheng Xinqing, Du Jianguo, et al. Study on trophic level of main fishes in the Jiulong River Estuary based on stable nitrogen isotope[J]. Haiyang Xuebao, 2015, 37(2):93-103.
    Lopez G R, Levinton J S. Ecology of deposit-feeding animals in marine sediments[J]. Quarterly Review of Biology, 1987, 62(3):235-260.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (660) PDF downloads(340) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return