Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Gan Yu, Ma Xiaochuan, Yan Jun. The application of spatial cross correlation in analyzing the migration of submarine sand waves[J]. Haiyang Xuebao, 2019, 41(4): 42-52. doi: 10.3969/j.issn.0253-4193.2019.04.004
Citation: Gan Yu, Ma Xiaochuan, Yan Jun. The application of spatial cross correlation in analyzing the migration of submarine sand waves[J]. Haiyang Xuebao, 2019, 41(4): 42-52. doi: 10.3969/j.issn.0253-4193.2019.04.004

The application of spatial cross correlation in analyzing the migration of submarine sand waves

doi: 10.3969/j.issn.0253-4193.2019.04.004
  • Received Date: 2018-03-25
  • Rev Recd Date: 2018-06-08
  • Submarine sand waves have great activity and may cause potential threatens to underwater facilities, thus the assessment of submarine sand waves always attracts wide attentions. At present, most researchers still use plane and profile contrast to analyze the characteristics of sand wave migration which however cannot produce 2D migration vectors of sand waves efficiently. Basing on high-resolution multi-beam bathymetric data in 2007 and 2009, this study describes the method of using spatial cross correlation to analyze the migration of submarine sand waves in southeastern Beibu Gulf in detail. By contrasting the measured data, the migration characteristics of sand waves in the study area are obtained. And the effects of various crucial parameters on the results in the spatial cross correlation algorithm are also discussed. Results show that spatial cross correlation method is feasible and reliable to produce the 2D migration vector of sand waves. The results are accordant to the previous results of the migration of sand waves in the study area. Nevertheless, when using the spatial cross correlation method, the appropriate parameters and vector acquisition method according to different geometry of sand waves and various data quality are required. This study has practiced a new method to determine the migrations of submarine sand waves, which will improve the efficiency and accuracy of obtaining the migration of marine landforms, as well as the refined dynamics of marine topography.
  • loading
  • Van Landeghem K J J, Wheeler A J, Mitchell N C, et al. Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe[J]. Marine Geology, 2009, 263(1/4):108-119.
    Flemming B W. Zur Klassifikation subaquatischer, strömungstransversaler Transportk rper[J]. Bochumer Geologische und Geotechnische Arbeiten, 1988, 29:44-47.
    Mccave I N. Sand waves in the North Sea off the coast of Holland[J]. Marine Geology, 1971, 10(3):199-225.
    van Dijk T A G P, Kleinhans M G. Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands[J]. Journal of Geophysical Research:Earth Surface, 2005, 110(F4):F04S10.
    夏东兴, 吴桑云, 刘振夏, 等. 海南东方岸外海底沙波活动性研究[J]. 黄渤海海洋,2001, 19(1):17-24. Xia Dongxing, Wu Sangyun, Liu Zhenxia, et al. Research on the activity of submarine sand waves off Dongfang, Hainan Island[J]. Journal of Oceanography of Huanghai & Bohai Seas, 2001, 19(1):17-24.
    曹立华, 徐继尚, 李广雪, 等. 海南岛西部岸外沙波的高分辨率形态特征[J]. 海洋地质与第四纪地质, 2006, 26(4):15-22. Cao Lihua, Xu Jishang, Li Guangxue, et al. High-resolution morphological characteristics of sand waves off the west Hainan Island[J]. Marine Geology & Quaternary Geology, 2006, 26(4):15-22.
    Németh A A, Hulscher S J M H, de Vriend H J. Offshore sand wave dynamics, engineering problems and future solutions[J]. Pipeline and Gas Journal, 2003, 230(4):67-69.
    Kubo Y, Nakajima T. Laboratory experiments and numerical simulation of sediment-wave formation by turbidity currents[J]. Marine Geology, 2002, 192(1/3):105-121.
    Besio G, Blondeaux P, Brocchini M, et al. On the modeling of sand wave migration[J]. Journal of Geophysical Research:Oceans, 2004, 109(C4):C04018.
    Németh A A, Hulscher S J M H, Van Damme R M J. Modelling offshore sand wave evolution[J]. Continental Shelf Research, 2007, 27(5):713-728.
    Whitmeyer S J, Fitzgerald D M. Episodic dynamics of a sand wave field[J]. Marine Geology, 2008, 252(1/2):24-37.
    Li Yong, Lin Mian, Jiang Wenbing, et al. Process control of the sand wave migration in Beibu Gulf of the South China Sea[J]. Journal of Hydrodynamics:Series B, 2011, 23(4):439-446.
    Ma Xiaochuan, Yan Jun, Fan Fengxin, et al. Response of bedload transport, submarine topography, and dune internal structures to typhoon processes off Dongfang coast in the Beibu Gulf[J]. Acta Oceanologica Sinica, 2013, 32(4):27-40.
    Best J. The fluid dynamics of river dunes:a review and some future research directions[J]. Journal of Geophysical Research, 2005, 110(F4):F04S02.
    Ferret Y, Le Bot S, Tessier B, et al. Migration and internal architecture of marine dunes in the eastern English Channel over 14 and 56 year intervals:the influence of tides and decennial storms[J]. Earth Surface Processes and Landforms, 2010, 35(12):1480-1493.
    王伟伟, 范奉鑫, 李成钢, 等. 海南岛西南海底沙波活动及底床冲淤变化[J]. 海洋地质与第四纪地质, 2007, 27(4):23-28. Wang Weiwei, Fan Fengxin, Li Chenggang, et al. Activity of submarine sand waves and seafloor erosion and deposition in the sea area to the southwest of Hainan Island[J]. Marine Geology & Quaternary Geology, 2007, 27(4):23-28.
    马小川. 海南岛西南海域海底沙波沙脊形成演化及其工程意义[D]. 青岛:中国科学院海洋研究所, 2013. Ma Xiaochuan. Formation, evolution and engineering significance of submarine sand waves and sand ridges, southeast of Hainan Island[D]. Qingdao:Institute of Oceanology, Chinese Academy of Science, 2013.
    蔺爱军, 胡毅, 林桂兰, 等. 海底沙波研究进展与展望[J]. 地球物理学进展, 2017, 32(3):1366-1377. Lin Aijun, Hu Yi, Lin Guilan, et al. Progress and perspective of submarine sand waves researches[J]. Progress in Geophysics, 2017, 32(3):1366-1377.
    Duffy G P, Hughes-Clarke J E. Application of spatial cross correlation to detection of migration of submarine sand dunes[J]. Journal of Geophysical Research:Earth Surface, 2005, 110(F4):F04S12.
    Keary P, Brooks M, Hill L. An introduction to geophysical exploration[M]. 2nd ed. Oxford:Blackwell Scientific Publications, 1991.
    Pratt W K. Digital Image Processing[M]. 2nd ed. Hoboken, New Jersey:John Wiley, 1991.
    Jambunathan K, Ju X Y, Dobbins B N, et al. An improved cross correlation technique for particle image velocimetry[J]. Measurement Science and Technology, 1995, 6(5):507-514.
    Sakakibara D, Sugiyama S. Ice front and flow speed variations of marine-terminating outlet glaciers along the coast of Prudhoe Land, northwestern Greenland[J]. Journal of Glaciology, 2018, 64(244):300-310.
    郭晓丹, 查显杰, 黄金水. 利用遥感影像偏移追踪的地震滑坡监测[J]. 遥感信息, 2016, 31(3):56-60. Guo Xiaodan, Zha Xianjie, Huang Jinshui. Monitoring earthquake-triggered landslide using optical image offset-tracking algorithm[J]. Remote sensing information, 2016, 31(3):56-60.
    Moya L, Yamazaki F, Liu W, et al. Calculation of coseismic displacement from lidar data in the 2016 Kumamoto, Japan, earthquake[J]. Natural Hazards and Earth System Sciences, 2017, 17(1):143-156.
    Buijsman M C, Ridderinkhof H. Long-term evolution of sand waves in the Marsdiep inlet. I:high-resolution observations[J]. Continental Shelf Research, 2008, 28(9):1190-1201.
    Zhang Kai, Yang Fanlin, Zhao Chunxia, et al. Using robust correlation matching to estimate sand-wave migration in Monterey Submarine Canyon, California[J]. Marine Geology, 2016, 376:102-108.
    奉仰崇. 面对北部湾的思考——关于环北部湾海岸的开发与保护[J]. 海洋开发与管理, 1999, 16(2):14-17. Feng Yangchong. Thoughts about the Beibu Gulf:the development and protection of coasts along the Beibu Gulf[J]. Ocean Development and Management, 1999, 16(2):14-17.
    王文介. 南海北部的潮波传播与海底沙脊和沙波发育[J]. 热带海洋, 2000, 19(1):1-7. Wang Wenjie. Propagation of tidal waves and development of sea-bottom sand ridges and sand ripples in northern South China Sea[J]. Tropic Oceanology, 2000, 19(1):1-7.
    高伟. 海南东方岸外陆架底形变化特征及对海底管线状态的影响[D]. 青岛:中国海洋大学, 2008. Gao Wei. The subsea bedforms evolution characteristic on continental shelf and the effect to the seafloor pipeline condition off Dongfang, Hainan Island[D]. Qingdao:Ocean University of China, 2008.
    刘振夏, 夏东兴. 中国近海潮流沉积沙体[M]. 北京:海洋出版社, 2004. Liu Zhenxia, Xia Dongxing. Tidal Sands in the China Seas[M]. Beijing:China Ocean Press, 2004.
    李泽文, 阎军, 栾振东, 等. 海南岛西南海底沙波形态和活动性的空间差异分析[J]. 海洋地质动态, 2010, 26(7):24-32. Li Zewen, Yan Jun, Luan Zhendong, et al. Analysis on spatial differences of morphology and mobility of the submarine sand waves in southwest Hainan Island[J]. Marine Geology Letters, 2010, 26(7):24-32.
    Jiang Wenbin, Lin Mian. Research on bilateral reverse migration of one-group seabed sand waves in a small shallow shelf sea[J]. Coastal Engineering, 2016, 111:70-82.
    郭立. 北部湾东南海域海底沙波沙脊区沉积物输运的数值模拟研究[D]. 青岛:中国科学院大学(中国科学院海洋研究所), 2017. Guo Li. Numerical simulation on sediment transportation in sand waves and sand ridges field in the southeast of Beibu Gulf[D]. Qingdao:University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2017.
    江文滨. 海底小尺度沙波运移高分辨率数值计算模型研究[D]. 北京:中国科学院大学, 2012. Jiang Wenbin. High resolution numerical model research on seabed small scale sandwave migration[D]. Beijing:University of Chinese Academy of Science, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (495) PDF downloads(236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return