Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Luo Hao, Li Linwei, Wang Jinlong, Zhong Qiangqiang, Du Jinzhou. The desorption of radium isotopes in river sediments in Qinzhou Bay[J]. Haiyang Xuebao, 2019, 41(4): 27-41. doi: 10.3969/j.issn.0253-4193.2019.04.003
Citation: Luo Hao, Li Linwei, Wang Jinlong, Zhong Qiangqiang, Du Jinzhou. The desorption of radium isotopes in river sediments in Qinzhou Bay[J]. Haiyang Xuebao, 2019, 41(4): 27-41. doi: 10.3969/j.issn.0253-4193.2019.04.003

The desorption of radium isotopes in river sediments in Qinzhou Bay

doi: 10.3969/j.issn.0253-4193.2019.04.003
  • Received Date: 2018-02-13
  • Rev Recd Date: 2018-03-20
  • Radium isotopes are one of the useful tracers to study the submarine groundwater discharge (SGD) processes. It is indispensable to estimate the desorption flux of the river sediment when estimate SGD flux. Thus, it is necessary to study the desorption behavior of the radium isotopes in river sediment/suspended particles, especially for the smaller size range of sediment. In the present work, the effects of grain sizes of sediments and salinities of sea water from the Qinzhou Bay on the desorption of radium isotopes were investigated by laboratory experiments. The results show that, within the grain size range of 0.9-136.0 μm, the desorption amounts of radium isotopes from the sediment to seawater (salinity 33.9) decrease with the grain size increase, and the desorption amounts keep almost constant when the grain size is larger than 43.7 μm. Within the salinity range of 4.9-33.9, the desorption amounts of radium isotopes from sediments gradually increase with the salinity increasing until the salinity reaches 24.9. By establishing creatively the radium desorption model using the sediment surface fractal structure theory, the maximum exchangeable activities of 224Ra, 226Ra and 228Ra from the river sediment of Qinzhou Bay are estimated to be 1.13 dpm/g, 0.17 dpm/g and 0.85 dpm/g, respectively; and the concerned maximum desorption ratios are 30%, 7% and 18%. Compared to those from other estuarine/coastal regions, the maximum exchangeable activities of 224Ra and 226Ra from the river sediments in Qinzhou Bay are in the middle or low ranges, while the maximum desorption ratios are in the higher or lower levels, respectively. The results of this study is expected to be useful to better understand the desorption behavior of radium isotopes and estimate accurately SGD flux.
  • loading
  • Moore W S. The subterranean estuary:a reaction zone of ground water and sea water[J]. Marine Chemistry, 1999, 65(1/2):111-125.
    Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575):612-614.
    Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2):3-33.
    Su Ni, Du Jinzhou, Moore W S, et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra[J]. Science of the Total Environment, 2011, 409(19):3909-3918.
    Ji Tao, Du Jinzhou, Moore W S, et al. Nutrient inputs to a Lagoon through submarine groundwater discharge:the case of Laoye Lagoon, Hainan, China[J]. Journal of Marine Systems, 2013, 111-112:253-262.
    Wang Xilong, Du Jinzhou, Ji Tao, et al. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay-A typical multi-species culture ecosystem in China[J]. Marine Chemistry, 2014, 167:113-122.
    Ye Qi, Liu Jianan, Du Jinzhou, et al. Bacterial diversity in submarine groundwater along the coasts of the Yellow Sea[J]. Frontiers in Microbiology, 2016, 6:1519.
    Tait D R, Maher D T, Sanders C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200:295-309.
    王希龙, 杜金洲, 张经. 基于223Ra和224Ra的桑沟湾海底地下水排放通量[J]. 海洋学报, 2017, 39(4):16-27. Wang Xilong, Du Jinzhou, Zhang Jing. Submarine groundwater discharge into Sanggou Bay traced by 223Ra and 224Ra[J]. Acta Oceanologica Sinica, 2017, 39(4):16-27.
    Burnett W C, Aggarwal P K, Aureli A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment, 2006, 367(2/3):498-543.
    Hancock G J, Murray A S. Source and distribution of dissolved radium in the Bega River estuary, Southeastern Australia[J]. Earth and Planetary Science Letters, 1996, 138(1/4):145-155.
    Gonneea M E, Morris P J, Dulaiova H, et al. New perspectives on radium behavior within a subterranean estuary[J]. Marine Chemistry, 2008, 109(3/4):250-267.
    Moore W S. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes[J]. Biogeochemistry, 2003, 66(1/2):75-93.
    Moore W S, Astwood H, Lindstrom C. Radium isotopes in coastal waters on the Amazon shelf[J]. Geochimica et Cosmochimica Acta, 1995, 59(20):4285-4298.
    Beck A J, Rapaglia J P, Cochran J K, et al. Radium mass-balance in Jamaica Bay, NY:evidence for a substantial flux of submarine groundwater[J]. Marine Chemistry, 2007, 106(3/4):419-441.
    郭占荣, 黄磊, 袁晓婕, 等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 22(1):118-125. Guo Zhanrong, Huang Lei, Yuan Xiaojie, et al. Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes[J]. Advances in Water Science, 2011, 22(1):118-125.
    Li Yuanhui, Chan L H. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary[J]. Earth and Planetary Science Letters, 1979, 43(3):343-350.
    Hancock G J. The effect of salinity on the concentrations of radium and thorium in sediments[D]. Australian:Australian National University, 1993.
    Webster I T, Hancock G J, Murray A S. Modelling the effect of salinity on radium desorption from sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(12):2469-2476.
    Sun Hongbing, Semkow T M. Mobilization of thorium, radium and radon radionuclides in ground water by successive alpha-recoils[J]. Journal of Hydrology, 1998, 205(1/2):126-136.
    Beck A J, Cochran M A. Controls on solid-solution partitioning of radium in saturated marine sands[J]. Marine Chemistry, 2013, 156:38-48.
    谷河泉, 赵峰, 季韬, 等. 盐度对镭同位素在海南红树林沉积物解吸行为的影响[J]. 海洋与湖沼, 2015, 46(1):65-76. Gu Hequan, Zhao Feng, Ji Tao, et al. Effect of salinity on radium desorption from sediments in mangrove wetland, Hainan[J]. Oceanologia et Limnologia Sinica, 2015, 46(1):56-76.
    孔凡翠, 沙占江, 杜金洲, 等. 青海湖西岸镭同位素的解吸和扩散特征[J]. 湖泊科学, 2016, 28(5):1103-1114. Kong Fancui, Sha Zhanjiang, Du Jinzhou, et al. Desorption and diffusion characteristics of radium isotopes from particles in the western part of Lake Qinghai[J]. Journal of Lake Sciences, 2016, 28(5):1103-1114.
    夏冬, 米铁柱, 甄毓, 等. 海水对含水层沉积物中镭解吸的模拟实验[J]. 海洋环境科学, 2016, 35(1):63-67. Xia Dong, Mi Tiezhu, Zhen Yu, et al. Simulating the process of radium desorption from coastal aquifer sediments by seawater[J]. Marine Environmental Science, 2016, 35(1):63-67.
    袁晓婕, 郭占荣, 刘洁, 等. 咸水环境下沉积物中镭的解吸特点[J]. 地球学报, 2014, 35(5):582-588. Yuan Xiaojie, Guo Zhanrong, Liu Jie, et al. Characteristics of radium desorption from sediments in the salt water environment[J]. Acta Geoscientica Sinica, 2014, 35(5):582-588.
    林鸿溢, 李映雪. 分形论:奇异性探索[M]. 北京:北京理工大学出版社, 1992. Lin Hongyi, Li Yingxue. Fractal Theory:Singularity Exploration[M]. Beijing:Beijing Insitute of Technology, 1992.
    Moore W S, Arnold R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research:Oceans, 1996, 101(C1):1321-1329.
    Moore W S. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting[J]. Marine Chemistry, 2008, 109(3/4):188-197.
    Wang Jinlong, Du Jinzhou, Baskaran M, et al. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers[J]. Journal of Geophysical Research:Oceans, 2016, 121(1):224-239.
    Sayles F L, Mangelsdorf Jr P C. The equilibration of clay minerals with sea water:exchange reactions[J]. Geochimica et Cosmochimica Acta, 1977, 41(7):951-960.
    Elsinger R J, Moore W S. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries[J]. Estuarine, Coastal and Shelf Science, 1984, 18(6):601-613.
    Rama, Moore W S. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes[J]. Geochimica et Cosmochimica Acta, 1996, 60(23):4645-4652.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (617) PDF downloads(271) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return