Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Wang Zongchen, Yuan Ye, Wang Peitao, Gao Yi, Li Hongwei, Hou Jingming. Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean[J]. Haiyang Xuebao, 2019, 41(2): 1-13. doi: 10.3969/j.issn.0253-4193.2019.02.001
Citation: Wang Zongchen, Yuan Ye, Wang Peitao, Gao Yi, Li Hongwei, Hou Jingming. Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean[J]. Haiyang Xuebao, 2019, 41(2): 1-13. doi: 10.3969/j.issn.0253-4193.2019.02.001

Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean

doi: 10.3969/j.issn.0253-4193.2019.02.001
  • Received Date: 2018-08-18
  • Rev Recd Date: 2018-10-23
  • Based on linear shallow water equation and tsunami amplitude Green's law, a rapid earthquake induced tsunami amplitude forecast system covering the Pacific Ocean is developed. Thirty-two hour tsunami propagation simulation and amplitude forecast for Chinese coast can be completed within 90 s by using GPU parallel method. The system is validated by 9 major historical tsunamis induced by submarine earthquakes with Mw more than 8.0 in the Pacific region since 2006 with abundant observations. The results indicate that the linear shallow water model is capable of simulating the tsunami propagation in the ocean. And the Green's law basically can be used for amplitude estimation in the coastal region under the condition of slow-varying topography and open coastline with no complex geometry. Forecasting accuracy of threat levels is acceptable in terms of tsunami warning purpose, with 80% of results falling into the corresponding levels. The evaluation also confirms that the forecasting system can meet the requirement of tsunami warning in Chinese coastal areas. Note that near-field amplitude may have large deviations because of its sensitivity to tsunami source. In order to further improve the accuracy of quantitative warning of tsunami amplitude, we need to strengthen the research and operational practice from the following aspects:one is to improve the precision of the tsunami source by using method of multiple-data joint inversion; the second is to validate the feasibility of Green's law, or to construct refined and high-efficiency tsunami forecast model in coastal regions.
  • loading
  • Bernard E, Titov V. Evolution of tsunami warning systems and products[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 373(2053):20140371.
    宋昱莹. 沿海重大工程场址的地震海啸危险性分析方法研究[D]. 哈尔滨:中国地震局工程力学研究所, 2014. Song Yuying. Probabilistic tsunami hazard analysis on Chinese coastal giant infrastructure site[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2014.
    于福江, 原野, 赵联大, 等. 2010年2月27日智利8.8级地震海啸对我国影响分析[J]. 科学通报, 2011, 56(3):239-246. Yu Fujiang, Yuan Ye, Zhao Lianda, et al. Evaluation of potential hazards from teletsunami in China:tidal observations of a teletsunami generated by the Chile 8.8Mw earthquake[J]. Chinese Science Bulletin, 2011, 56(3):239-246.
    王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 2012, 55(9):3088-3096. Wang Peitao, Yu Fujiang, Zhao Lianda, et al. Numerical analysis of tsunami propagating generated by the Japan Mw 9.0 earthquake on Mar. 11 in 2011 and its impact on China coasts[J]. Chinese Journal of Geophysics, 2012, 55(9):3088-3096.
    Furumoto A S, Tatehata H, Morioka C. Japanese tsunami warning system[J]. Science of Tsunami Hazards, 1999, 17(2):85-105.
    Greenslade D J M, Simanjuntak M A, Burbidge D, et al. A first-generation real-time tsunami forecasting system for the Australian Region[R]. Melbourne:Bureau of Meteorology, 2007.
    Greenslade D J M, Simanjuntak M A, Allen S C R. An enhanced tsunami scenario database:T2[R]. CAWCR Technical Report No. 014, Melbourne:Bureau of Meteorology, 2009.
    Gica E, Spillane M C, Titov V V, et al. Development of the forecast propagation database for NOAA's short-term inundation forecast for tsunami (SIFT)[R]. NOAA Technical Memorandum OAR PMEL-139, Seattle, WA:U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Pacific Marine Environmental Laboratory, 2008.
    Schindelé F, Gailler A, Hébert H, et al. Implementation and challenges of the tsunami warning system in the western Mediterranean[J]. Pure and Applied Geophysics, 2015, 172(3/4):821-833.
    Steinmetz T, Raape U, Teßmann S, et al. Tsunami early warning and decision support[J]. Natural Hazards and Earth System Science, 2010, 10(9):1839-1850.
    Setiyono U, Gusman A R, Satake K, et al. Pre-computed tsunami inundation database and forecast simulation in Pelabuhan Ratu, Indonesia[J]. Pure and Applied Geophysics, 2017, 174(8):3219-3235.
    Wang D, Walsh D, Becker N, et al. A methodology for tsunami wave propagation forecast in real time[C]//American Geophysical Union, Fall Meeting, 2009. Washington:AGU, 2009.
    Wang Dailin, Becker N C, Walsh D, et al. Real-time forecasting of the April 11, 2012 Sumatra tsunami[J]. Geophysical Research Letters, 2012, 39(19):L19601.
    Jamelot A, Reymond D. New tsunami forecast tools for the French Polynesia tsunami warning system part Ⅱ:numerical modelling and tsunami height estimation[J]. Pure and Applied Geophysics, 2015, 172(3/4):805-819.
    Lin S C, Wu T R, Yen E, et al. Development of a tsunami early warning system for the South China Sea[J]. Ocean Engineering, 2015, 100:1-18.
    Synolakis C E, Bernard E N, Titov V V, et al. Validation and verification of tsunami numerical models[J]. Pure and Applied Geophysics, 2008, 165(11/12):2197-2228.
    Allen S C R, Greenslade D J M. Indices for the objective assessment of tsunami forecast models[J]. Pure and Applied Geophysics, 2013, 170(9/10):1601-1620.
    Greenslade D J M, Annunziato A, Babeyko A Y, et al. An assessment of the diversity in scenario-based tsunami forecasts for the Indian Ocean[J]. Continental Shelf Research, 2014, 79:36-45.
    Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154.
    Kanamori H, Rivera L. Source inversion of W phase:speeding up seismic tsunami warning[J]. Geophysical Journal of International, 2008, 175(1):222-238.
    Hayes G P, Rivera L, Kanamori H. Source inversion of W-phase:real-time implementation and extension to low magnitudes[J]. Seismological Research Letters, 2009, 80(5):817-822.
    Duputel Z, Rivera L, Kanamori H, et al. Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake[J]. Earth, Planets and Space, 2011, 63(7):535-539.
    Duputel Z, Rivera L, Kanamori H, et al. W phase source inversion for moderate to large earthquakes (1990-2010)[J]. Geophysical Journal International, 2012, 189(2):1125-1147.
    Stirling M, Goded T, Berryman K, et al. Selection of earthquake scaling relationships for seismic-hazard analysis[J]. Bulletin of the Seismological Society of America, 2013, 103(6):2993-3011.
    Blaser L, Krüger F, Ohrnberger M, et al. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of the Seismological Society of America, 2010, 100(6):2914-2926.
    Geist E L, Bilek S L. Effect of depth-dependent shear modulus on tsunami generation along subduction zones[J]. Geophysical Research Letters, 2001, 28(7):1315-1318.
    Bilek S L, Lay T. Rigidity variations with depth along interplate megathrust faults in subduction zones[J]. Nature, 1999, 400(6743):443-446.
    Synolakis C E. Green's law and the evolution of solitary waves[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(3):490-491.
    Hayashi Y. Empirical relationship of tsunami height between offshore and coastal stations[J]. Earth, Planets and Space, 2010, 62(3):269-275.
    Reymond D, Okal E A, Hébert H, et al. Rapid forecast of tsunami wave heights from a database of pre-computed simulations, and application during the 2011 Tohoku tsunami in French Polynesia[J]. Geophysical Research Letters, 2012, 39(11):L11603.
    Gailler A, Hébert H, Schindelé F. Coastal amplification laws for the French tsunami warning center:numerical modeling and fast estimate of tsunami wave heights along the French Riviera[J]. Pure and Applied Geophysics, 2018, 175(4):1429-1444.
    Tang Liujuan, Titov V V, Bernard E N, et al. Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements[J]. Journal of Geophysical Research:Oceans, 2012, 117(C8):C08008.
    Tang Liujuan, Titov V V, Moore C, et al. Real-time assessment of the 16 September 2015 Chile Tsunami and implications for near-field forecast[J]. Pure and Applied Geophysics, 2016, 173(2):369-387.
    Fujii Y, Satake K, Sakai S, et al. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake[J]. Earth, Planets and Space, 2011, 63(7):815-820.
    于福江, 王培涛, 赵联大, 等. 2010年智利地震海啸数值模拟及其对我国沿海的影响分析[J]. 地球物理学报, 2011, 54(4):918-925. Yu Fujiang, Wang Peitao, Zhao Lianda, et al. Numerical simulation of 2010 Chile tsunami and its impact on Chinese coasts[J]. Chinese Journal of Geophysics, 2011, 54(4):918-925.
    Gica E, Titov V V, Moore C, et al. Tsunami simulation using sources inferred from various measurement data:implications for the model forecast[J]. Pure and Applied Geophysics, 2015, 172(3/4):773-789.
    Burwell D, Tolkova E, Chawla A. Diffusion and dispersion characterization of a numerical tsunami model[J]. Ocean Modelling, 2007, 19(1/2):10-30.
    王培涛, 于福江, 原野, 等. 海底地震有限断层破裂模型对近场海啸数值预报的影响[J]. 地球物理学报, 2016, 59(3):1030-1045. Wang Peitao, Yu Fujiang, Yuan Ye, et al. Effects of finite fault rupture models of submarine earthquakes on numerical forecasting of near-field tsunami[J]. Chinese Journal of Geophysical, 2016, 59(3):1030-1045.
    Geist E L. Local tsunamis and earthquake source parameters[J]. Advances in Geophysics, 1998, 39:117-209.
    Gica E, Teng M H, Liu P L F, et al. Sensitivity analysis of source parameters for earthquake-generated distant tsunamis[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(6):429-441.
    Okal E A, Synolakis C E. Source discriminants for near-field tsunamis[J]. Geophysical Journal International, 2004, 158(3):899-912.
    Ulutas E. The 2011 off the Pacific coast of Tohoku-Oki earthquake and tsunami:influence of the source characteristics on the maximum tsunami heights[C]//Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake. Tokyo, Japan, 2012.
    Burbidge D, Mueller C, Power W. The effect of uncertainty in earthquake fault parameters on the maximum wave height from a tsunami propagation model[J]. Natural Hazards and Earth System Sciences, 2015, 15(10):2299-2312.
    Satake K. Inversion of tsunami waveforms for the estimation of a fault heterogeneity:method and numerical experiments[J]. Journal of Physics of the Earth, 1987, 35(3):241-254.
    Hayes G P. Rapid source characterization of the 2011Mw 9.0 off the Pacific coast of Tohoku earthquake[J]. Earth, Planets and Space, 2011, 63(7):529-534.
    Yamazaki Y, Lay T, Cheung K F, et al. Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake[J]. Geophysical Research Letters, 2011, 38(7):L00G15.
    Yokota Y, Koketsu K, Fujii Y, et al. Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake[J]. Geophysical Research Letters, 2011, 38(7):L00G21.
    Song Y T, Fukumori I, Shum C K, et al. Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean[J]. Geophysical Research Letters, 2012, 39(5):L05606.
    Wei Yong, Newman R V, Hayes G P, et al. Tsunami forecast by joint inversion of real-Time tsunami waveforms and seismic or GPS data:application to the Tohoku 2011 tsunami[J]. Pure and Applied Geophysics, 2014, 171(12):3281-3305.
    Titov V, Song Y T, Tang L, et al. Consistent estimates of tsunami energy show promise for improved early warning[J]. Pure and Applied Geophysics, 2016, 173(12):3863-3880.
    Okal E A. Seismic parameters controlling far-field tsunami amplitudes:a review[J]. Natural Hazards, 1988, 1(1):67-96.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (620) PDF downloads(210) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return