Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Sun Hui, Liu Shaozhi, Fan Guozhang, Lü Fuliang. Depositional characteristics and temporal and spatial evolution of deep water channel complex systems: A case study of Middle Miocene in the Rovuma Basin, East Africa[J]. Haiyang Xuebao, 2019, 41(1): 87-97. doi: 10.3969/j.issn.0253-4193.2019.01.009
Citation: Sun Hui, Liu Shaozhi, Fan Guozhang, Lü Fuliang. Depositional characteristics and temporal and spatial evolution of deep water channel complex systems: A case study of Middle Miocene in the Rovuma Basin, East Africa[J]. Haiyang Xuebao, 2019, 41(1): 87-97. doi: 10.3969/j.issn.0253-4193.2019.01.009

Depositional characteristics and temporal and spatial evolution of deep water channel complex systems: A case study of Middle Miocene in the Rovuma Basin, East Africa

doi: 10.3969/j.issn.0253-4193.2019.01.009
  • Received Date: 2017-11-07
  • Rev Recd Date: 2018-03-16
  • The channel complex systems of the Middle Miocene in the Rovuma Basin, East Africa exhibits complex filling characteristics and space-time evolution. The distribution of various hierarchies in channel complex system is analyzed under seismic resolution by several seismic techniques, such as 3D visualization, horizontal coherence slice, interval slice of root mean square amplitude, and the vertical and lateral evolution models are established. The channel complex system in Middle Miocene in the Rovuma Basin is composed with four identified hierarchies including channel complex system, channel complex set, channel complex and channel. The channel complex system evolves from strongly restricted to locally restricted along the direction of turbidity currents. The channel complex system is differentiated into three independent channel complex sets in the distal. The channel complex set shows four depositional patterns, two patterns are consistent and synchronous with the channel complex system, the other two patterns are weak confined and unconfined channel complex sets. Deep water deposition in channel complex systems is mainly affected by the sea level change, slope gradient and bottom current, the sedimentary scale, transport distance, deposition position, extension direction and external morphology change with time and space. The channel complex system presents a complex multi-level filling feature. The vertical overlap patterns vary with the location of the deposits. The late distribution of early channel complex set affect the development of the later channel complex set.
  • loading
  • Menard Jr H W. Deep-sea channels, topography, and sedimentation[J]. AAPG Bulletin, 1995, 39(2):236-255.
    Crane W H, Lowe D R. Architecture and evolution of the Paine channel complex, Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Magallanes Basin, Chile[J]. Sedimentology, 2008, 55(4):979-1009.
    Babonneau N, Savoye B, Cremer M, et al. Sedimentary architecture in meanders of a submarine channel:detailed study of the present Congo turbidite channel (Zaiango project)[J]. Journal of Sedimentary Research, 2010, 80(10):852-866.
    Mitchum R M, Wach G. Offshore Niger Delta Pleistocene/Holocene leveed channel fans:models for offshore reservoirs[C]//22nd Annual GCSSEPM Foundation Bob F. Perkins Research Conference 2002:Sequence Stratigraphic Models for Exploration and Production. Tulsa, OK:Gulf Coast Section SEPM, 2002:713-728.
    Saller A H, Noah J T, Ruzuar A P, et al. Linked lowstand delta to basin-floor fan deposition, offshore Indonesia:an analog for deep-water reservoir systems[J]. AAPG Bulletin, 2004, 88(1):21-46.
    Catuneanu O. Principles of Sequence Stratigraphy[M]. Amsterdam:Elsevier Science, 2006:1-375.
    Covault J A, Normark W R, Romans B W, et al. Highstand fans in the California borderland:the overlooked deep-water depositional systems[J]. Geology, 2007, 35(9):783-786.
    Reading H G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5):792-822.
    Mayall M, Stewart I. The architecture of turbidite slope channels[M]//Weimer P. Deep-water Reservoirs of the World. Tulsa, OK:SEPM Society for Sedimentary Geology, 2000:578-586.
    Palermo D, Galbiati M, Famiglietti M, et al. Insights into a new super-giant gas field-sedimentology and reservoir modeling of the coral reservoir complex, offshore northern Mozambique[C]//Offshore Technology Conference-Asia. Kuala Lumpur, Malaysia:OTC, 2014:1-8.
    孔祥宇. 东非鲁武马盆地油气地质特征与勘探前景[J]. 岩性油气藏, 2013, 25(3):21-27. Kong Xiangyu. Petroleum geologic characteristics and exploration prospect in Rovuma Basin, East Africa[J]. Lithologic Reservoirs, 2013, 25(3):21-27.
    孙辉, 吕福亮, 范国章, 等. 三级层序内受底流影响的富砂深水沉积演化规律——以东非鲁武马盆地中中新统为例[J]. 天然气地球科学, 2017, 28(1):106-115. Sun Hui, Lü Fuliang, Fan Guozhang, et al. Evolution of deepwater sand-rich sediments affected by bottom currents in the 3rd order sequences:A case study of Middle Miocene in the Ruvuma Basin[J]. Natural Gas Geoscience, 2017, 28(1):106-115.
    Fonnesu F. 3D seismic images of a low-sinuosity slope channel and related depositional lobe (West Africa deep-offshore)[J]. Marine and Petroleum Geology, 2003, 20(6/8):615-629.
    谢玉洪, 范彩伟, 周家雄, 等. 琼东南盆地中中新世重力流海底扇沉积特征及控制因素[J]. 天然气地球科学, 2016, 27(2):220-228. Xie Yuhong, Fan Caiwei, Zhou Jiaxiong, et al. Sedimentary features and controlling factors of the gravity flows in submarine fan of Middle Miocene in the Qiongdongnan Basin[J]. Natural Gas Geoscience, 2016, 27(2):220-228.
    Salman G, Abdula I. Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique[J]. Sedimentary Geology, 1995, 96(1/2):7-41.
    马君, 刘剑平, 潘校华, 等. 东、西非大陆边缘比较及其油气意义[J]. 成都理工大学学报:自然科学版, 2009, 36(5):538-545. Ma Jun, Liu Jianping, Pan Xiaohua, et al. Geological characters of the East and West Africa continental margins and their significance for hydrocarbon exploration[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2009, 36(5):538-545.
    Bosellini A. East Africa continental margins[J]. Geology, 1986, 14(1):76-78.
    Faugères J C, Mulder T. Contour currents and contourite drifts[M]//Hüneke H, Mulder T. Deep-Sea Sediments. Amsterdam:Elsevier, 2011:149-214.
    Fonnesu F. The Mamba Complex supergiant gas discovery (Mozambique):an example of turbidite fans modified by deepwater tractive bottom currents[C]//The 12th PESGB/HGS Conference on African E&P. London:PESGB, 2013.
    Deptuck M E, Steffens G S, Barton M, et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J]. Marine and Petroleum Geology, 2003, 20(6/8):649-676.
    Sprague A R, Sullivan M D, Campion K M, et al. The physical stratigraphy of deep-water stratal:a hierarchical approach to the analysis of genetically related stratigraphic elements for improved reservoir prediction[C]//AAPG Annual Meeting. Houston, TX:AAPG, 2002:10-13.
    Weimer P, Slatt P M. Introduction to the petroleum geology of deepwater settings[M]. Tulsa:AAPG, 2007.
    Goyeneche C J, Slatt R M, Witten A J, et al. Outcrop characterization, 3-D geological modeling, and upscaling for reservoir simulation of Jackfork group turbidites in the Hollywood Quarry, Arkansas, USA[M]//Nilsen T H, Shew R D, Steffens G S, et al. Atlas of Deep-Water Outcrops. Tulsa, OK:American Association of Petroleum Geologists, 2008:26-29.
    Haughton P D W. Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain[J]. Sedimentology, 2000, 47(3):497-518.
    Kneller B. The influence of flow parameters on turbidite slope channel architecture[J]. Marine and Petroleum Geology, 2003, 20(6/8):901-910.
    Adeogba A A, McHargue T R, Graham S A. Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope[J]. AAPG Bulletin, 2005, 89(5):627-643.
    Heiniö P, Davies R J. Knickpoint migration in submarine channels in response to fold growth, western Niger Delta[J]. Marine and Petroleum Geology, 2007, 24(6/9):434-449.
    Vail P R, Mitchum Jr R M. Seismic stratigraphy and global changes of sea level, Part 1. Overview:section 2. Application of seismic reflection configuration to stratigraphic interpretation[J]. Geophysical Research Letters, 1977, 26:51-52.
    Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy:part 1:seismic Stratigraphy Interpretation Procedure[M]//Bally A W. AAPG Studies in Geology:Atlas of Seismic Stratigraphy, Tulsa, OK:American Association of Petroleum Geologists, 1987, 27(1):1-10.
    Posamentier H W. Depositional elements associated with a basin floor channel-levee system:case study from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2003, 20(6/8):677-690.
    Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793):1156-1167.
    Burbank D W, Anderson R S. Tectonic geomorphology[M]. Malden:Blackwell Science Ltd, 2001.
    孙辉, 刘少治, 马宏霞, 等. 东非鲁武马盆地海底水道——朵体体系粗粒浊流沉积物波特征及主控因素[J]. 沉积学报, 2017, 35(4):763-771. Sun Hui, Liu Shaozhi, Ma Hongxia, et al. Characteristics and controlling factors of coarse-grained turbidite sediment waves in submarine channel-lobe system of the Ruvuma Basin, East Africa[J]. Acta Sedimentologica Sinica, 2017, 35(4):763-771.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (636) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return