Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Sun Weifu, Miao Junwei, Zhang Jie, Meng Junmin, Ma Yi, Liu Yige. Analysis of the Arctic sea surface temperature observation capability using space borne microwave radiometer data[J]. Haiyang Xuebao, 2018, 40(11): 116-127. doi: 10.3969/j.issn.0253-4193.2018.11.012
Citation: Sun Weifu, Miao Junwei, Zhang Jie, Meng Junmin, Ma Yi, Liu Yige. Analysis of the Arctic sea surface temperature observation capability using space borne microwave radiometer data[J]. Haiyang Xuebao, 2018, 40(11): 116-127. doi: 10.3969/j.issn.0253-4193.2018.11.012

Analysis of the Arctic sea surface temperature observation capability using space borne microwave radiometer data

doi: 10.3969/j.issn.0253-4193.2018.11.012
  • Received Date: 2018-01-19
  • Rev Recd Date: 2018-05-02
  • In this paper, SST data of AMSR2, GMI, WindSat and HY-2A RM in 2016 are used to analyze the space-time coverage and the accuracy of remote sensing SST in the Arctic. The results show that, the space borne microwave radiometer SST retrievals coverage rate and effective coverage days in winter are lower than that in summer, and the effective SST coverage rate of GMI is lower, and AMSR2 is higher. When AMSR2, GMI, WindSat and HY-2A RM space borne microwave radiometer SST data are combined used, the SST coverage rate can be between 12%-15% in February, and the number of effective observation days is better than 26 days. The SST coverage rate is higher than 26% in the whole August, and the number of effective observation days is better than 29 days. The error of the space borne microwave radiometer SST data in the Arctic is larger than that of the global average. The accuracy of AMSR2 data is the best one, the accuracy of WindSat data is close to that of AMSR2. The RMSE of GMI SST is about 2 times larger than AMSR2, and the accuracy of HY-2A RM data is lower than that of any other space borne microwave radiometer.
  • loading
  • Kawai Y, Wada A. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean:a review[J]. Journal of Oceanography, 2007, 63(5):721-744.
    Dash P, Ignatov A, Martin M, et al. Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons-Part 2:near real time web-based level 4 SST Quality Monitor (L4-SQUAM)[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2012, 77-80:31-43.
    孔爱婷, 刘健, 余旭, 等. 北极海冰范围时空变化及其与海温气温间的数值分析[J]. 地球信息科学学报, 2016, 18(6):797-804. Kong Aiting, Liu Jian, Yu Xu, et al. Spatio-temporal variability of arctic sea ice extent and its numerical analysis with sea surface temperature and air temperature[J]. Journal of Geo-Information Science, 2016, 18(6):797-804.
    王艳珍, 管磊, 曲利芹. 卡尔曼滤波在卫星红外、微波海表温度数据融合中的应用[J]. 中国海洋大学学报:自然科学版, 2010, 40(12):126-130. Wang Yanzhen, Guan Lei, Qu Liqin. Merging sea surface temperature observed by satellite infrared and microwave radiometers using Kalman filter[J]. Periodical of Ocean University of China, 2010, 40(12):126-130.
    Barton I, Pearce A. Validation of GLI and other satellite-derived sea surface temperatures using data from the Rottnest island ferry, western Australia[J]. Journal of Oceanography, 2006, 62(3):303-310.
    Zhao Yili, Zhu Jianhua, Lin Mingsen, et al. Assessment of the initial sea surface temperature product of the scanning microwave radiometer aboard on HY-2 satellite[J]. Acta Oceanologica Sinica, 2014, 33(1):109-113.
    Gentemann C L, Wentz F J, Mears C A, et al. In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures[J]. Journal of Geophysical Research, 2004, 109(C4):C04021.
    Chelton D B, Wentz F J. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research[J]. Bulletin of the American Meteorological Society, 2005, 86(8):1097-1116.
    Stammer D, Wentz F, Gentemann C. Validation of microwave sea surface temperature measurements for climate purposes[J]. Journal of Climate, 2003, 16(1):73-87.
    李明, 刘骥平, 张占海, 等. 利用南大洋漂流浮标数据评估AMSR-E SST[J]. 海洋学报, 2010, 32(6):47-55. Li Ming, Liu Jiping, Zhang Zhanhai, et al. Evaluation of AMSR-E SST in the Southern Ocean using drifting buoy data[J]. Haiyang Xuebao, 2010, 32(6):47-55.
    朱恩泽, 张雷, 石汉青, 等. 2004年-2013年WindSat海表面温度产品与浮标观测对比[J]. 遥感学报, 2016, 20(2):315-327. Zhu Enze, Zhang Lei, Shi Hanqing, et al. Accuracy of WindSat sea surface temperature:comparison of buoy data from 2004 to 2013[J]. Journal of Remote Sensing, 2016, 20(2):315-327.
    Jiang Xingwei, Lin Mingsen, Liu Jianqiang, et al. The HY-2 satellite and its preliminary assessment[J]. International Journal of Digital Earth, 2012, 5(3):266-281.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (601) PDF downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return