Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Xue Qiaona, Hu Bo, Tan Liju, Wang Jiangtao. Experimental simulation of urea adsorption on sediments in different sea areas, China[J]. Haiyang Xuebao, 2018, 40(10): 190-199. doi: 10.3969/j.issn.0253-4193.2018.10.018
Citation: Xue Qiaona, Hu Bo, Tan Liju, Wang Jiangtao. Experimental simulation of urea adsorption on sediments in different sea areas, China[J]. Haiyang Xuebao, 2018, 40(10): 190-199. doi: 10.3969/j.issn.0253-4193.2018.10.018

Experimental simulation of urea adsorption on sediments in different sea areas, China

doi: 10.3969/j.issn.0253-4193.2018.10.018
  • Received Date: 2018-04-28
  • Rev Recd Date: 2018-06-14
  • Typical sea areas of Bohai Sea, Yellow Sea and East China Sea were selected, and the sediments were collected to simulate experiment on adsorption and desorption of urea. The Freundlich adsorption model and the Henry adsorption model were used to analyze the thermodynamic properties of urea adsorption on different sediment surfaces. The effect of temperature, particle size and organic matter content on the adsorption of urea on the surface of sediments was studied. The results showed that three typical stages, which were quick adsorption stage(0-5 h), slow adsorption stage (5-12 h) and equilibrium stage(after 12 h), were obviously showed in adsorption and desorption curves of urea on sediments. When the urea concentration is low, the sediment desorbs and releases urea, and the sediment adsorbs the urea in the overlying water when the urea concentration gradually increases. The adsorption capacity of urea from strong to weak is the Bohai Sea, East China Sea and Yellow Sea, which may be related to the types of sediments. The Freundlich equation and the Henry equation can accurately simulate the adsorption of urea by sediments. Temperature, particle size and organic matter content all affect the adsorption of urea on the sediments. With the increase of temperature, the adsorption of urea on the sediments becomes smaller. The smaller the particle size of sediments and the higher the organic matter content, the stronger the adsorption capacity. Therefore, when revealing the environmental behavior of urea on the sediment surface, it is necessary to fully consider the influence of the above factors.
  • loading
  • Gu Binhe, Havens K E, Schelske C L, et al. Uptake of dissolved nitrogen by phytoplankton in a eutrophic subtropical lake[J]. Journal of Plankton Research, 1997, 19(6):759-770.
    Kudela R M, Cochlan W P. Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California[J]. Aquatic Microbial Ecology, 2000, 21(1):31-47.
    Berg G M, Glibert P M, Lomas M W, et al. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event[J]. Marine Biology, 1997, 129(2):377-387.
    Solomon C M, Collier J L, Berg G M, et al. Role of urea in microbial metabolism in aquatic systems:a biochemical and molecular review[J]. Aquatic Microbial Ecology, 2010, 59(1):67-88.
    Crandall J B, Teece M A. Urea is a dynamic pool of bioavailable nitrogen in coral reefs[J]. Coral Reefs, 2012, 31(1):207-214.
    Huang Wenmin, Bi Yonghong, Hu Zhengyu. Effects of fertilizer-urea on growth, photosynthetic activity and microcystins production of Microcystis aeruginosa isolated from Dianchi Lake[J]. Bull Environ Contam Toxicol, 2014, 92(5):514-9.
    Gobler C J, Boneillo G E, Debenham C J, et al. Nutrient limitation, organic matter cycling, and plankton dynamics during an Aureococcus anophagefferens bloom[J]. Aquatic Microbial Ecology, 2004, 35(1):31-43.
    Cornell S E, Jickells T D, Thornton C A. Urea in rainwater and atmospheric aerosol[J]. Atmospheric Environment, 1998, 32(11):1903-1910.
    Glibert P M, Harrison J, Heil C, et al. Escalating worldwide use of urea a global change contributing to coastal eutrophication[J]. Biogeochemistry, 2006, 77(3):441-463.
    秦岭. 中国尿素行业生产快速发展[J]. 化工文摘, 2001(9):54. Qin Ling. China's urea industry develops rapidly[J]. China Chemicals, 2001(9):54.
    Michael B J, Arrigo K R, Matson P A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean[J]. Nature, 2005, 434(7030):211-214.
    Baker K M, Gobler C J, Collier J L. Urease gene sequences from algae and heterotrophic bacteria in axenic and nonaxenic phytoplankton cultures[J]. Journal of Phycology, 2009, 45(3):625-634.
    Beckers G, Bendt A K, Krämer R, et al. Molecular identification of the urea uptake system and transcriptional analysis of urea transporter-and urease-encoding genes in Corynebacterium glutamicum[J]. Journal of Bacteriology, 2004, 186(22):7645-7652.
    Berman T, Bronk D A. Dissolved organic nitrogen:a dynamic participant in aquatic ecosystems[J]. Aquatic Microbial Ecology, 2003, 31(3):279-305.
    Johnson D, Moore L, Green S, et al. Direct and indirect effects of ammonia, ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland[J]. Environmental Pollution, 2010, 158(10):3157-3163.
    梁重山, 杨党志, 刘丛强,等. 土壤有机质对菲的吸附-解吸平衡的影响[J]. 高等学校化学学报, 2005, 26(4):671-676. Liang Chongshan, Yang Dangzhi, Liu Congqiang, et al. Effects of soil organic matters on adsorption-desorption equilibria of phenanthrene[J]. Chemical Journal of Chinese Universities, 2005, 26(4):671-676.
    王金本. 表面活性剂在固——液界面上吸附过程的疏水效应研究[J]. 天中学刊, 2000, 15(2):26-31. Wang Jinben. The hydrophobic effect in the adsorption of surfactants on to activatated Caron[J]. Journal of Tianzhong, 2000, 15(2):26-31.
    Wang Shengrui, Jin Xiangcan, Bu Qingyun, et al. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments[J]. Journal of Hazardous Materials, 2006, 128(2/3):95-105.
    罗雪梅, 刘昌明, 何孟常. 土壤与沉积物对多环芳烃类有机物的吸附作用[J]. 生态环境, 2004, 13(3):394-398. Luo Xuemei, Liu Changming, He Mengchang. Sorption of polycyclic aromatic hydrocarbons (PAHs) by soils and sediments:a review[J]. Ecology and Environment, 2004, 13(3):394-398.
    Nkedi-kizza P, Rao P S C, Johnson J W. Adsorption of diuron and 2, 4, 5 T on soil particle size separates[J]. Journal of Environmental Quality, 1983, 12(2):195-197.
    Nkedi-Kizza P, Rao P S C, Hornsby A G. Influence of organic cosolvents on sorption of hydrophobic organic chemicals by soils[J]. Environmental Science & Technology, 1985, 19(10):975-979.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (568) PDF downloads(219) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return