Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Chen Jianfang, Jin Haiyan, Bai Youcheng, Zhuang Yanpei, Li Hongliang, Li Yangjie, Ren Jian. Marine ecological and environmental responses to the Arctic rapid change[J]. Haiyang Xuebao, 2018, 40(10): 22-31. doi: 10.3969/j.issn.0253-4193.2018.10.003
Citation: Chen Jianfang, Jin Haiyan, Bai Youcheng, Zhuang Yanpei, Li Hongliang, Li Yangjie, Ren Jian. Marine ecological and environmental responses to the Arctic rapid change[J]. Haiyang Xuebao, 2018, 40(10): 22-31. doi: 10.3969/j.issn.0253-4193.2018.10.003

Marine ecological and environmental responses to the Arctic rapid change

doi: 10.3969/j.issn.0253-4193.2018.10.003
  • Received Date: 2018-04-28
  • Rev Recd Date: 2018-06-05
  • This paper focuses on the background of rapid change in the west Arctic, investigates the marine ecological environmental responses to the Arctic rapid change on the aspects of the variation of nutrients, chlorophyll, phytoplankton community and sedimentary carbon buried in the western Arctic Ocean. Due to its special geographical location, the Arctic Ocean has become the most sensitive area for the regional response of climate change. In the last two decades, as the consequences of Arctic sea water temperature rises, rapid sea ice melting, light limitation disappearing, the upper layer of nutrients are fully utilized, chlorophyll increasing and chlorophyll maximum layer moves down and expands to the north, and the marine biological pump is running more efficiently. In addition to the ice algae, which once played an important role in the Arctic ecosystem, organic carbon from photosynthesis such as diatom has aslo gradually increased in the water column and buried in sediments. The increase in primary productivity in the western Arctic not only increases carbon sink in the sediment, but also provides more food sources for marine ecosystems.
  • loading
  • Serreze M C, Barrett A P, Stroeve J C, et al. The emergence of surface-based Arctic amplification[J]. The Cryosphere, 2009, 3:11-19.
    Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline:Faster than forecast[J]. Geophysical research letters, 2007, 34(9):L09501.
    Stroeve J C, Serreze M C, Holland M M, et al. The Arctic's rapidly shrinking sea ice cover:a research synthesis[J]. Climatic Change, 2012, 110:1005-1027.
    Qi Di, Chen Liqi, Chen Baoshan, et al. Increase in acidifying water in the western Arctic Ocean[J]. Nature Climate Change, 2017, 7(3):195-199.
    Torres-Valdés S, Tsubouchi T, Bacon S, et al. Export of nutrients from the Arctic Ocean[J]. Journal of Geophysical Research Oceans, 2013, 118:1625-1644.
    Grebmeier J M, Cooper L W, Ferderh M, et al. Ecosystem dynamics of the Pacific influenced northern Bering and Chukchi Sea in the Amerasian arctic[J]. Progress in Oceanography, 2006, 71:331-361.
    Woodgate R A, Weingartner T J, Lindsay R. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column[J]. Geophysical Research Letters, 2012, 39:24603.
    Ge S, Yang Daqing, Kane D L. Yukon River Basin long-term (1977-2006) hydrologic and climatic analysis[J]. Hydrological Processes, 2013, 27:2475-2484.
    潘红, 陈敏, 童金炉,等. 2003-2012年间白令海峡断面淡水构成的时空变化[J]. 海洋学报, 2015, 37(11):135-146. Pan Hong, Chen Min, Tong Jinlu, et al. Spatial and temporal variations of freshwater components at a transect near the Bering Strait during 2003-2012[J]. Haiyang Xuebao, 2015, 37(11):135-146.
    Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298:2171-2173.
    Lara R J, Rachold V, Kattner G, et al. Dissolved organic matter and nutrients in the Lena River, Siberian Arctic:Characteristics and distribution[J]. Marine Chemistry, 1998, 59:301-309
    Guo Laodong, Zhang Jiazhong, Guéguen C. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River[J]. Global Biogeochemical Cycles, 2004, 18, GB1038.
    李宏亮, 陈建芳, 高生泉, 等. 西北冰洋中太平洋入流水营养盐的变化特征[J]. 海洋学报, 2011, 33(2):85-95. Li Hongliang, Chen Jianfang, Gao Shengquan, et al. Nutrients variation of the Pacific inflow in the western Arctic Ocean[J]. Haiyang Xuebao, 2011, 33(2):85-95.
    李宏亮, 陈建芳, 高生泉, 等. 加拿大海盆北部营养盐限制作用研究[J]. 海洋学报, 2015, 37(11):147-154. Li Hongliang, Chen Jianfang, Gao Shengquan, et al. Nutrient limitation in the northern Canada Basin[J]. Haiyang Xuebao, 2015, 37(11):147-154.
    Benner R, Benitez-Nelson B, Kaiser K, et al. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean[J]. Geophysical Research Letters, 2004, 31(5). https://doi.org/10.1029/2003GL019251.
    Ekwurzel B, Schlosser P, Mortlock R A, et al. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean[J]. Journal of Geophysical Research:Oceans, 2001, 106(C5):9075-9092.
    Fouest V L, Zakardjian B, Xie H, et al. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean:a focus on light-driven processes[J]. Biogeosciences, 2013, 10(7):4785-4800.
    Tremblay J É, Simpson K, Martin J, et al. Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea[J]. Journal of Geophysical Research Oceans, 2008, 113:C07S90, doi: 10.1029/2007JC004547.
    Tovar-Sánchez A, Duarte C M, Alonso J C, et al. Impacts of metals and nutrients released from melting multiyear Arctic sea ice[J]. Journal of Geophysical Research:Oceans, 2010, 115(C7):https://doi.org/10.1029/2009JC005685.
    Zhuang Yanpei, Jin Haiyan, Chen Jianfang, et al. Response of nutrients and the surface phytoplankton community to ice melting in the central Arctic Ocean[J]. Advances in Polar Science, 2011, 22(4):266-272.
    Andersen O G N. Primary production, chlorophyll, light, and nutrients beneath the Arctic Sea ice[M]//HermanY. Ed. The Arctic Seas:Climatology, Oceanography, Geology and Biology. New York:Van Nostr and Reinhold Company, 1989:147-191.
    Cota G F, Pomeroy L R, Harrison W G, et al. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea:Arctic summer nutrient depletion and heterotrophy[J]. Marine Ecology Progress, 1996, 135:247-258.
    Arrigo K R, Perovich D K, Pickart R S, et al. Massive phytoplankton blooms under Arctic sea ice[J]. Science, 2012, 336:1408.
    刘子琳, 陈建芳, 张涛, 等. 楚科奇海及其海台区粒度分级叶绿素a与初级生产力[J]. 生态学报, 2007, 27(12):4953-4962. Liu Zilin, Chen Jianfang, Zhang Tao, et al. The size-fractionated chlorophyll a concentration and primary productivity in the Chukchi Sea and its northern Chukchi Plateau[J]. Acta Ecologica Sinica, 2007, 27(12):4953-4962.
    Codispoti L A, Flagg C, Kelly V, et al. Hydrographic conditions during the 2002 SBI process experiments[J]. Deep-Sea Research Part Ⅱ, 2005, 56:1144-1163.
    刘子琳, 陈建芳, 刘艳岚, 等. 2008年夏季西北冰洋观测区叶绿素a和初级生产力粒级结构[J]. 海洋学报, 2011, 33(2):124-133. Liu Zilin, Chen Jianfang, Liu Yanlan, et al. The size-fractionated chlorophyll a and primary productivity in the surveyed area of the western Arctic Ocean during the summer of 2008[J]. Haiyang Xuebao, 2011, 33(2):124-133.
    乐凤凤, 郝锵, 金海燕, 等. 2012年楚科奇海及其邻近海域浮游植物现存量和初级生产力粒级结构研究[J]. 海洋学报, 2014, 36(10):103-115. Le Fengfeng, Hao Qiang, Jin Haiyan, et al. Size structure of standing stock and primary production of phytoplankton in the Chukchi Sea and the adjacent sea area during the summer of 2012[J]. Haiyang Xuebao, 2014, 36(10):103-115.
    Hill V, Cota G. Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52:3344-3354.
    Boetius A, Albrecht S, Bakker K, et al. Export of algal biomass from the melting Arctic sea ice[J]. Science, 2013, 339:1430-1432.
    Legendre L, Ackley S F, Dieckmann G S, et al. Ecology of sea ice biota[J]. Polar Biology, 1992, 12(3/4):429-444.
    Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 1997, 44:1623-1644.
    Falkowski F G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic phytoplankton[J]. Science, 2004, 305(5682):354-360.
    Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer[J]. Continental Shelf Research, 2016, 129:23-32.
    Zhuang Yanpei, Jin Haiyan, Fan G U, et al. Composition of algal pigments in surface freshen layer after ice melt in the central Arctic[J]. Acta Oceanologica Sinica, 2017, 36(8):1-9.
    Coupel P, Jin H Y, Joo M, et al. Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic[J]. Biogeosciences, 2012, 9:4835-4850.
    Zhang Fang, He Jianfang, Lin Ling, et al. 2015. Dominance of picophytoplankton in the newly open surface water of the central Arctic Ocean[J]. Polar Biology, 38(7):1081-1089.
    Li W K W, McLaughlin F A, Lovejoy C, et al. Smallest algae thrive as the Arctic Ocean freshens[J]. Science, 2009, 326(5952):539.
    He Jianfeng, Zhang Fang, Lin Ling, et al. Bacterioplankton and picophytoplankton abundance, biomass, and distribution in the Western Canada Basin during summer 2008[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2012, 81-84:36-45.
    Grebmeier J M, Overland J E, Moore S E, et al. A major ecosystem shift in the northern Bering Sea[J]. Science, 2006, 311(5766):1461-1464.
    Wassmann P, Duarte C M, Agustí S, et al. Footprints of climate change in the Arctic marine ecosystem[J]. Global Change Biology, 2011, 17(2):1235-1249.
    Tréguer P, Bowler C, Moriceau B, et al. Influence of diatom diversity on the ocean biological carbon pump[J]. Nature Geoscience, 2018, 11:27-37.
    Booth B C, Horner R A. Microalgae on the Arctic Ocean section, 1994:Species abundance and biomass[J]. Deep-Sea Research Ⅱ, 1997, 44:1607-1622.
    Conley D J. Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments[J]. Biogeochemistry, 1988, 6(3):161-179.
    Nelson D M, Anderson R F, Barber R T, et al. Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2002, 49:1645-1674.
    李宏亮, 陈建芳, 刘子琳, 等. 北极楚科奇海和加拿大海盆南部颗粒生物硅的粒级结构[J]. 自然科学进展, 2007, 17(1):72-78. Li Hongliang, Chen Jianfang, Liu Zilin, et al. Size class of parrticulate biogenic silica in the Chukchi Sea and the southern Canada Basin[J]. Progress in Natural Sience, 2007, 17(1):72-78.
    李宏亮, 陈建芳, 金海燕, 等. 楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义[J]. 海洋学报, 2008, 30(1):165-171. Li Hongliang, Chen Jianfang, Jin Haiyan, et al. Biogenic constituents of surface sediments in the Chukchi Sea:implications for organic carbon burying efficiency[J]. Haiyang Xuebao, 2008, 30(1):165-171.
    张海舟, 庄燕培, 朱庆梅, 等. 西北太平洋楚科奇海沉积物-水界面营养盐输送通量估算[J]. 海洋学报, 2015, 37(11):155-164. Zhang Haizhou, Zhuang Yanpei, Zhu Qingmei, et al. Estimation of nutrients flux of water-sediment interface in the Chukchi Sea, the western Arctic Ocean[J]. Haiyang Xuebao, 2015, 37(11):155-164.
    Stein R, Macdonald R W. The Organic Carbon Cycle in the Arctic Ocean[M]. Berlin, Springer, 2004.
    陈建芳, 张海生, 金海燕, 等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16(3):193-201. Chen Jianfang, Zhang Haisheng, Jin Haiyan, et al. Accumulation of sedimentary or ganic carbon in the Arctic shelves and its significance on global carbon budget[J]. Chinese Journal of Polar Research, 2004, 16(3):193-201.
    陈建芳, 金海燕, 李宏亮, 等. 北极快速变化对北冰洋碳汇机制和过程的影响[J]. 科学通报, 2015, 60(35):3406-3416. Chen Jianfang, Jin Haiyan, Li Hongliang, et al. Carbon sink mechanism and process in the Arctic Ocean under Arctic rapid change[J]. Chinese Science Bulletin, 2015, 60(35):3406-3416.
    白有成, 陈建芳, 李宏亮, 等. 楚科奇海附近表层沉积物中类脂生物标志物的分布特征和意义[J]. 海洋学报, 2010, 32(2):106-117. Bai Youcheng, Chen Jianfang, Li Hongliang, et al. The distribution of lipids biomarkers in the surface sediments of the Chukchi Sea and their implications[J]. Haiyang Xuebao, 2010, 32(2):106-117.
    白有成, 陈建芳, 李宏亮, 等. 楚科奇海R12a沉积柱状样500年以来生物标记物记录[J]. 沉积学报, 2010, 28(4):768-775. Bai Youcheng, Chen Jianfang, Li Hongliang, et al. Biomarker records in sediment core of R12a from the Chukchi Sea during the lase 500 years[J]. Acta Sedimentologica Sinica, 2010, 28(4):768-775.
    Belt S T, Massé G, Rowland S J, et al. A novel chemical fossil of palaeo sea ice:IP25. Organic Geochemistry, 2007, 38:16-27.
    Rowland S L, Belt S T, Wraige E J, et al. Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia[J]. Phytochemistry, 2001, 56:597-602.
    Brown T, Belt S T, Philippe B, et al. Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea:further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice[J]. Polar Biology, 2011, 34:1857-1868.
    Müller J, Massé G, Stein R, et al. Variability of sea-ice conditions in the Fram Strait over the past 30000 years[J]. Nature Geoscience, 2009, 2:772-776.
    Müller J, Wagner A, Fahl K, et al. Towards quantitative sea ice reconstructions in the northern North Atlantic:A combined biomarker and numerical modelling approach[J]. Earth and Planetary Science Letters, 2011, 306:137-148.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (794) PDF downloads(513) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return