Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Yang Guipeng, Zhang Honghai. Sources and transformation processes of biogenic active gases in the ocean[J]. Haiyang Xuebao, 2018, 40(10): 14-21. doi: 10.3969/j.issn.0253-4193.2018.10.002
Citation: Yang Guipeng, Zhang Honghai. Sources and transformation processes of biogenic active gases in the ocean[J]. Haiyang Xuebao, 2018, 40(10): 14-21. doi: 10.3969/j.issn.0253-4193.2018.10.002

Sources and transformation processes of biogenic active gases in the ocean

doi: 10.3969/j.issn.0253-4193.2018.10.002
  • Received Date: 2018-04-30
  • Rev Recd Date: 2018-06-29
  • Marine biogenic active gases mainly include dimethylsulfide (DMS), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), volatile halocarbons (VHCs) and non-methane hydrocarbons (NMHCs). These biogenic active gases are released into the atmosphere through the air-sea exchange and play critical roles not only in global cycling of carbon, nitrogen and sulfur but also in the direct and indirect influences on the climate and environmental changes. Some marine biogenic active gases belong to greenhouse gases (CH4, N2O, VHCs and CO), and others would participate in chemical reactions in the atmosphere and control atmospheric chemical equilibrium and ozone concentration (VHCs and NMHCs). By contrast, DMS is a negative greenhouse effect gas. It will be rapidly oxidized to produce sulfate aerosol in the atmosphere and influence cloudy formation and the Earth's radiative budget. The present research status of marine biogenic active gases is reviewed and the sources and sinks, sea-to-air fluxes of DMS, CH4 and N2O as well as their influencing factors are summarized. Finally, some problems existing in the field and future research directions are presented.
  • loading
  • Rosswall T. Greenhouse gases and global change:international collaboration[J]. Environmental Science & Technology, 1991, 25(4):567-573.
    IPCC. Climate change 2013:the physical science basis[R]. Cambridge:Cambridge University Press, 2013.
    Moore R M. Marine sources of volatile organohalogens[M]//Gribble G. Natural Production of Organohalogen Compounds. Berlin, Heidelberg:Springer, 2003:85-101.
    McGenity T J, Crombie A T, Murrell J C. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth[J]. ISME Journal, 2018, 12:931-941.
    Carpenter L J, Archer S D, Beale R. Ocean-atmosphere trace gas exchange[J]. Chemical Society Reviews, 2012, 41(19):6473-6506.
    Lamarque J F, Hess P, Emmons L, et al. Tropospheric ozone evolution between 1890 and 1990[J]. Journal of Geophysical Research:Atmospheres, 2005, 110(D8):D08304.
    Kettle A J, Andreae M O, Amouroux D, et al. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month[J]. Global Biogeochemical Cycles, 1999, 13(2):399-444.
    Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate[J]. Nature, 1987, 326(6114):655-661.
    Gantt B, Meskhidze N, Zhang Yang, et al. The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States[J]. Atmospheric Environment, 2010, 44(1):115-121.
    Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochemical Cycles, 1991, 5(3):193-259.
    Marty D G. Methanogenic bacteria in seawater[J]. Limnology and Oceanography, 1993, 38(2):452-456.
    Karl D M, Tilbrook B D. Production and transport of methane in oceanic particulate organic matter[J]. Nature, 1994, 368(6473):732-734.
    Yoshida N, Morimoto H, Hirano M, et al. Nitrification rates and 15N abundances of N2O and NO3- in the western North Pacific[J]. Nature, 1989, 342(6252):895-897.
    Codispoti L A, Christensen J P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical south Pacific Ocean[J]. Marine Chemistry, 1985, 16(4):277-300.
    Löscher C R, Kock A, Könneke M, et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea[J]. Biogeosciences, 2012, 9(7):2419-2429.
    Martinez M, Ventouras L A, Wilson A T, et al. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria[J]. Frontiers in Microbiology, 2013, 4:340.
    Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266):976-979.
    Ledyard K M, Dacey J W H. Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater[J]. Limnology and Oceanography, 1996, 41(1):33-40.
    Jiao Nianzhi, Liu Chengzheng, Hong Huasheng, et al. Dynamics of dimethylsulfide and dimethylsulfoniopropionate produced by phytoplankton in the Chinese Seas-distribution patterns and affecting factors[J]. Acta Botanica Sinica, 2003, 45(7):774-786.
    del Valle D A, Kieber D J, Kiene R P. Depth-dependent fate of biologically-consumed dimethylsulfide in the Sargasso Sea[J]. Marine Chemistry, 2007, 103(1/2):197-208.
    Vogt C, Rabenstein A, Rethmeier J, et al. Dimethyl sulphoxide reduction with reduced sulphur compounds as electron donors by anoxygenic phototrophic bacteria[J]. Microbiology, 1997, 143:767-773.
    Gabric A, Gregg W, Najjar R, et al. Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean:a review[J]. Chemosphere-Global Change Science, 2001, 3(4):377-392.
    Andreae M O. The ocean as a source of atmospheric sulfur compounds[M]//Buat-Ménard P. The Role of Air-Sea Exchange in Geochemical Cycling. Dordrecht:Springer, 1986:331-362.
    Bates T S, Kelly K C, Johnson J E, et al. A reevaluation of the open ocean source of methane to the atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1996, 101(D3):6953-6961.
    臧家业. 东海海水中的溶存甲烷[J]. 海洋学报, 1998, 20(2):52-59. Zang Jiaye. Dissolved methane in sea water of the East China Sea[J]. Haiyang Xuebao, 1998, 20(2):52-59.
    Elkins J W, Wofsy S C, McElroy M B, et al. Aquatic sources and sinks for nitrous oxide[J]. Nature, 1978, 275(5681):602-606.
    Nevison C D, Weiss R F, Erickson Ⅲ D J. Global oceanic emissions of nitrous oxide[J]. Journal of Geophysical Research:Oceans, 1995, 100(C8):15809-15820.
    Khalil M A K, Moore R M, Harper D B, et al. Natural emissions of chlorine-containing gases:Reactive chlorine emissions inventory[J]. Journal of Geophysical Research, 1999, 104(D7):8333-8346.
    Yang Guipeng. Dimethylsulfide enrichment in the surface microlayer of the South China Sea[J]. Marine Chemistry, 1999, 66(3/4):215-224.
    Zhang Guiling, Zhang Jing, Ren Jingling, et al. Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer[J]. Marine Chemistry, 2008, 110(1/2):42-55.
    Lu Xiaolan, Yang Guipeng, Song Guisheng, et al. Distributions and fluxes of methyl chloride and methyl bromide in the East China Sea and the Southern Yellow Sea in autumn[J]. Marine Chemistry, 2010, 118(1/2):75-84.
    Yang Guipeng, Ren Chunyan, Lu Xiaolan, et al. Distribution, flux, and photoproduction of carbon monoxide in the East China Sea and Yellow Sea in spring[J]. Journal of Geophysical Research:Ocean, 2011, 116(C2):C02001.
    Li Jianlong, Zhang Honghai, Yang Guipeng. Distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea during summer[J]. Chemosphere, 2017, 178:291-300.
    靳娜. 黄、渤海二甲基硫的光化学过程及其迁移转化速率研究[D]. 青岛:中国海洋大学, 2016. Jin Na. Studies on photochemical process of dimethylsulfide and its transformation rates in the Yellow Sea and the Bohai Sea[D]. Qingdao:Ocean University of China, 2016.
    Jian Shan, Zhang Honghai, Zhang Jing, et al. Spatiotemporal distribution characteristics and environmental control factors of biogenic dimethylated sulfur compounds in the East China Sea during spring and autumn[J]. Limnology and Oceanography, 2018, 63(S1):S280-S298.
    Zhang Honghai, Yang Guipeng, Zhu Tong. Distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer of the Yellow Sea, China, in spring[J]. Continental Shelf Research, 2008, 28(17):2417-2427.
    Yang Guipeng, Zhang Honghai, Zhou Limin, et al. Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea[J]. Continental Shelf Research, 2011, 31(13):1325-1335.
    Yang Guipeng, Zhang Honghai, Su Luping, et al. Biogenic emission of dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution to sulfate in aerosol during summer[J]. Atmospheric Environment, 2009, 43(13):2196-2203.
    Sun M S, Zhang G L, Ma X, et al. Dissolved methane in the East China Sea:Distribution, seasonal variation and emission[J]. Marine Chemistry, 2018, 202:12-26.
    Zhang G L, Zhang J, Liu S M, et al. Nitrous oxide in the Changjiang (Yangtze River) Estuary and its adjacent marine area:riverine input, sediment release and atmospheric fluxes[J]. Biogeosciences, 2010, 7(11):3505-3516.
    Zhang Guiling, Zhang Jing, Liu Sumei, et al. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area:riverine input, sediment release and atmospheric fluxes[J]. Biogeochemistry, 2008, 91(1):71-84.
    叶旺旺. 东、黄海溶存甲烷的分布、产生及释放[D]. 青岛:中国海洋大学, 2015. Ye Wangwang. Distribution, production and emission of methane in the East China Sea and Yellow Sea[D]. Qingdao:Ocean University of China, 2015.
    马啸. 东、黄海溶解氧化亚氮的分布和通量研究[D]. 青岛:中国海洋大学, 2013. Ma Xiao. Distribution and air-sea fluxes of dissolved nitrous oxide in the Yellow Sea and the East China Sea[D]. Qingdao:Ocean University of China, 2013.
    Yang Guipeng, Wang Weilei, Lu Xiaolan, et al. Distribution, flux and biological consumption of carbon monoxide in the Southern Yellow Sea and the East China Sea[J]. Marine Chemistry, 2010, 122(1/4):74-82.
    He Zhen, Yang Guipeng, Lu Xiaolan, et al. Distributions and sea-to-air fluxes of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane and bromoform in the Yellow Sea and the East China Sea during spring[J]. Environmental Pollution, 2013, 177:28-37.
    Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle[J]. Marine Chemistry, 1990, 30:1-29.
    Ayers G P, Gillett R W. DMS and its oxidation products in the remote marine atmosphere:implications for climate and atmospheric chemistry[J]. Journal of Sea Research, 2000, 43(3/4):275-286.
    Meskhidze N, Nenes A. Phytoplankton and cloudiness in the Southern Ocean[J]. Science, 2006, 314(5804):1419-1423.
    Krüger O, Graßl H. Southern Ocean phytoplankton increases cloud albedo and reduces precipitation[J]. Geophysical Research Letters, 2011, 38(8):L08809.
    Quinn P K, Bates T S. The case against climate regulation via oceanic phytoplankton sulphur emissions[J]. Nature, 2011, 480(7375):51-56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (871) PDF downloads(365) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return