Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113-124. doi: 10.3969/j.issn.0253-4193.2018.09.010
Citation: Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113-124. doi: 10.3969/j.issn.0253-4193.2018.09.010

The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions

doi: 10.3969/j.issn.0253-4193.2018.09.010
  • Received Date: 2017-08-28
  • Rev Recd Date: 2017-10-23
  • With climate change occurrence, such as global warming, polar sea ice has been drawn increasing attentions. Synthetic aperture radar (SAR) can monitor earth independent on sunlight and cloud. GaoFen-3 is a C-band SAR of the GaoFen series satellites, which has multiple imaging modes and can obtain data globally. SAR plays an important role in monitoring polar sea ice due to the advantage of all-weather operation and high spatial resolution. Bases on the GaoFen-3 horizontal-vertical data, we proposed an automatic method to discriminate sea ice and sea water, using the support vector machine classification method. The detected sea ice shows good agreement with visual inspection. The successful development of this algorithm supports the Gaofen-3 SAR for operational service of monitoring polar sea ice.
  • loading
  • Magnusdottir G, Deser C, Saravanan R. The effects of North Atlantic SST and sea iceanomalies on the winter circulation in CCM3. Part I:Main features and storm trackcharacteristics of the response[J]. Journal of Climate, 2004, 17(5), 857-876.
    Dong B W, Sutton R. T. Adjustment of the coupled ocean-atmosphere system to a suddenchange in the Thermohaline Circulation[J]. Geophysical Research Letters, 2002, 29(15):18-1-18-4.
    Wakabayashi H, Mori Y, Nakamura K. Sea ice detection in the sea of Okhotsk using PALSAR and MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3):1516-1523.
    Zhang X, Dierking W, Zhang J, et al. A polarimetric decomposition method for ice in the Bohai Sea using C-band PolSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(1):47-66.
    Hollands T, Linow S, Dierking W. Reliability measures for sea ice motion retrieval from synthetic aperture radar images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):67-75.
    Zakhvatkina N, Korosov A, Muckenhuber S, et al. Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images[J]. The Cryosphere, 2016, 11:33-46.
    张晰, 张杰, 纪永刚. 基于纹理特征分析的辽东湾SAR影像海冰检测[J]. 海洋科学进展, 2008,26(3):386-393. Zhang Xi, Zhang Jie, Ji Yonggang. Sea ice detection of Liaodong Bay SAR images based on texture feature analysis[J]. Advances in Marine Science, 2008, 26(3):386-393.
    Deng H, Clausi D A. Unsupervised segmentation of synthetic aperture Radar sea ice imagery using a novel Markov random field model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):528-538.
    Leigh S, Wang Z J, Clausi D A. Automated ice-water classification using dual polarization SAR satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5529-5539.
    Wakabayashi H, Mori Y, Nakamura K. Sea ice detection in the sea of Okhotsk using PALSAR and MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 6(3):1516-1523.
    Karvonen J, Simila M, Makynen M. Open water detection from Baltic Sea ice RADARSAT-1 SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3):275-279.
    Abreu R D, Flett D, Scheuchl B, et al. Operational sea ice monitoring with RADARSAT-2-A glimpse into the future[J]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 2(1):1308-1310.
    Partington K, Flach J D, Barber D, et al. Dual-polarization C-band radar observations of sea ice in the Amundsen Gulf[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6):2685-2691.
    Nghiem S, Bertoia C. Study of multi-polarization C-band backscatter signatures for Arctic sea ice mapping with future satellite SAR:Ice and icebergs[J]. Canadian Journal of Remote Sensing, 2001, 27(5):387-402.
    Sandven S, Johannessen O M, Miles M W, et al. Barents Sea seasonal ice zone features and processes from ERS-1 synthetic aperture radar:Seasonal ice zone experiment 1992[J]. Journal of Geophysical Research:Oceans banner, 1999, 104(C7):15843-15857.
    Soh L K, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2):780-795.
    Barber D G, Shokr M E, Fernandez R A, et al. A comparison of second order classifiers for SAR sea ice discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1993, 59(9):c1397-1408.
    Zakhvatkina N, Alexandrov V, Johannessen O, et al. Classification of sea ice types in ENVISAT synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5), 2587-2600.
    Liu H, Guo H, Zhang L. SVM-Based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4), 1601-1613.
    杨劲松, 任林, 王隽. 高分三号卫星对海浪的首次定量遥感[J]. 海洋与湖沼, 2017, 48(2):207-209. Yang Jinsong, Ren Lin, Wang Jun. The first time quantitative remote sensing of ocean surface waves by GaoFen-3 satellite[J]. Oceanologia et Limnologia Sinica, 2017, 48(2):207-209.
    王文煜,谢春华,袁新哲,等. 高分三号卫星ATI模式海表面流场测量性能分析[J]. 航天器工程,2017,26(1):132-139. Wang Wenyu, Xie Chunhua, Yuan Xinzhi, et al. Performance analysis of sea surface current measurements by GF-3 satellite ATI mode[J]. Spacecraft Engineering, 2017, 26(1):132-139.
    杨劲松, 王隽, 任林. 高分三号卫星对海洋内波的首次定量遥感[J]. 海洋学报, 2017, 39(1):148. Yang Jinsong, Wang Jun, Ren Lin. The first quantitative remote sensing of internal waves by GaoFen-3 satellite[J]. Haiyang Xuebao, 2017, 39(1):148.
    Zakhvatkina N, Alexandrov V, Johannessen O, et al. Classification of sea ice types in ENVISAT synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2587-2600.
    Clausi D. An analysis of co-occurrence texture statistics as a function of grey level quantization[J]. Canadian Journal of Remote Sensing, 2002, 28(1):45-62.
    Ulaby F T, Kouyate F, Brisco B, et al. Textural information in SARImages[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(2):235-2245.
    Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66.
    Chang C C, Lin C L. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 27(2):1-27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (714) PDF downloads(258) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return