Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhou Qikun, Sun Yongfu, Hu Guanghai, Song Yupeng, Liu Xiaoyu, Du Xing. Research on the migration rule and the typhoon impact on the submarine sand waves of the northern South China Sea[J]. Haiyang Xuebao, 2018, 40(9): 78-89. doi: 10.3969/j.issn.0253-4193.2018.09.007
Citation: Zhou Qikun, Sun Yongfu, Hu Guanghai, Song Yupeng, Liu Xiaoyu, Du Xing. Research on the migration rule and the typhoon impact on the submarine sand waves of the northern South China Sea[J]. Haiyang Xuebao, 2018, 40(9): 78-89. doi: 10.3969/j.issn.0253-4193.2018.09.007

Research on the migration rule and the typhoon impact on the submarine sand waves of the northern South China Sea

doi: 10.3969/j.issn.0253-4193.2018.09.007
  • Received Date: 2017-10-24
  • Rev Recd Date: 2018-03-08
  • Submarine sand waves, vital to seabed stability, are an important consideration for oceanic engineering projects such as oil pipe lines and submarine cables. The properties of surface sediment and the evolvement of submarine sand waves in a specified area in the South China Sea are studied using both a hydrological model and field observational data. The bottom flow field data between 2010 and 2011 in the study area are simulated by the Regional Ocean Model System (ROMS). The migration of submarine sand waves is calculated using Rubin's formula along with typhoon data and bottom flow field data, which allows for the analysis of sand wave response under the influence of typhoons. The migration direction calculated by Rubin's formula and bottom flow are very similar to collected data. The migration distance of different positions is between 0.0 m and 21.8 m, which reciprocates cumulatively. This shows that Rubin's formula can predict the progress of submarine sand waves with the bottom flow simulated by ROMS. The migration distances of 2 sites in the study area are 2.0 m and 2.9 m during the Typhoon "Fanapi". The proportion of the calculated migration distance by the typhoon is 9.17% and 26.36% of the annual migration distance, respectively, which proves that the typhoon can make a significant impact on submarine sand waves.
  • loading
  • Ashley G M. Classification of large-scale subaqueous bedform:New look at old Problem[J]. Journal of Sedimentary Petrology, 1990, 60(1):160-172.
    Swift D J P, Field M E. Evolution of a classic sand ridge field:Maryland sector, North American inner shelf[J]. Sedimentology, 1981, 28(4):461-482.
    McBride R A, Moslow T F. Origin, evolution and distribution of shoreface sand ridges, Atlantic inner shelf, U.S.A.[J]. Marine Geology, 1991, 97(1/2):57-85.
    Dalrymple R W, Hoogendoorn E L. Erosion and deposition on migrating shoreface-attached ridges, Sable Island, eastern Canada[J]. Geoscience Canada, 1997, 24(1):25-36.
    Blondeaux P, Vittori G. A model to predict the migration of sand waves in shallow tidal seas[J]. Continental Shelf Research, 2016,112(5):31-45.
    Anthony D, Leth J O. Large-scale bedforms,sediment distribution and sand mobility in the eastern North Sea off the Danish west coast[J]. Marine Geology, 2002, 182(3/4):247-263.
    Santoro V C,Amore E, Cavallaro L, et al. Evolution of sand waves in the Messina Strait, Italy[J]. Ocean Dynamics, 2004, 54(3/4):392-398.
    Idier D, Ehrhold A,Garlan T. Morphodynamics of an undersea sand wave of the Dover Straits[J]. Comptes Rendus Geoscience, 2002, 334(15):1079-1085.
    Kennedy A B, Slatton K C, Hsu T, etal. Ephemeral sand waves in the hurricane surf zone[J]. Marine Geology, 2008, 250(3/4):276-280.
    Todd B J. Morphology and composition of submarine barchans dunes on the Seotian Shelf,Canadian Ailantiemargin[J]. Geomorphology, 2005, 67(3/4):487-500.
    Perillo G M E, Ludwiek J C. Geomorphology of a sand wave in lower Chesapeake Bay,Virginia, U.S.A.[J]. Geo-Marine Letters, 1994, 4(2):105-112.
    Chen Kefeng, Zheng Jinhai, Zhang Chi, et al. The evolution characteristics of main waterways and their control mechanism in the radial sand ridges of the southern Yellow Sea[J]. Acta Oceanologica Sinica, 2017, 36(3):91-98.
    夏东兴, 吴桑云, 刘振夏, 等. 海南东方岸外海底沙波活动性研究[J]. 黄渤海海洋, 2001, 19(l):17-24. Xia Dongxing, Wu Sangyn, Liu Zhenxia, et al. Research on the activity of submarine sand waves off Dongfang, Hainan Island[J]. Journal of Oceanography of Huanghai & Bohai Seas, 2001, 19(l):17-24.
    Leckie H F S, Mohr H, Draper S, et al. Sedimentation-induced burial of subsea pipelines:Observations from field data and laboratory experiments[J]. Coastal Engineering, 2016, 114:137-158.
    林缅, 范奉鑫, 李勇, 等. 南海北部沙波运移的观测与理论分析[J]. 地球物理学报, 2009, 52(3):776-784. Lin Mian, Fan Fengxin, Li Yong, et al. Observation and theoretical analysis for the sand-waves migration in the North Gulf of South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(3):776-784.
    Li Y, Lin M, Jiang W B. Process control of the sand wave migration in Beibu Gulf of the South China Sea[J]. Journal of Hydronamics, 2011, 23(4):439-446.
    Van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam:Aqua Publication, 1993.
    Ribberink J S. Bed-load transport for steady flows and unsteady oscillatory flows[J]. Coastal Engineering, 1998, 34(1/2):59-82.
    Camenen B, Larson M. A general formula for non-cohesive bed load sediment transport[J]. Estuarine, Coastal and Shelf Science, 2005, 63(1):249-260.
    Rubin D M, Huter R E. Bedforms climbing in theory and nature[J]. Sedimentology, 1982, 29(1):121-138.
    Knaapen M A F. Sandwave migration predictor based on shape information[J]. Journal of Geophysical Research:Earth Surface, 2005,110(F4):F04S11.
    Li Daming, Wang Xiao, Wang Xin, et al. Sediment mathematical model for sand ridges and sand waves[J]. Acta Oceanologica Sinica, 2016, 35(5):141-149.
    冯文科, 黎维峰, 石要红. 南海北部海底沙波地貌动态研究[J]. 1994, 16(6):92-99. Feng Wenke, Li Weifeng, Shi Yaohong. Dynamic study on sand wave geomorphology in Northern South China Sea[J]. Haiyang Xuebao, 1994, 16(6):92-99.
    王尚毅, 李大鸣. 南海珠江口盆地陆架斜坡及大陆坡海底沙波动态分析[J]. 海洋学报,1994, 16(6):122-132. Wang Shangyi, Li Daming. Dynamic analysis on sand waves in continental shelf slope and continental slope of Pearl River Mouth Basin in South China Sea[J]. Haiyang Xuebao, 1994, 16(6):122-132.
    白玉川, 杨细根, 田琦, 等. 南海北部海域海底沙波演化特征[J]. 水力学报, 2009, 40(8):941-955. Bai Yuchuan, Yang Xigen, Tian Qi, et al. Evolution characteristics of seabed sand wave in Northern South China Sea[J]. Journal of Hydraulic Engineering, 2009, 40(8):941-955.
    王伟伟, 阎军, 范奉鑫. 波流联合作用下的海底沙波移动对海底底床稳定性影响的研究进展[J]. 海洋科学, 2007, 31(3):89-93. Wang Weiwei, Yan Jun, Fan Fengxin. The research situation of bed-form stability influenced by seabed sand wave migration under wave combined current conditions[J]. Marine Sciences, 2007, 31(3):89-93.
    Zhang Zhiqiang, Wei Zhiqiang, He Huizhong, et al. Potential submarine geologic hazards at the entrance of the Pearl River Estuary in the northern South China Sea[J]. Journal of Ocean University of China, 2016,15(4):606-612.
    栾锡武, 彭学超, 王英民, 等. 南海北部陆架海底沙波基本特征及属性[J]. 地质学报, 2010, 84(2):233-245. Luan Xiwu, Peng Xuechao, Wang Yingmin, et al. Characteristics of sand waves on the Northern South China Sea Shelf and its formation[J]. Acta Geologica Sinica, 2010, 84(2):233-245.
    李泽文. 南海北部外陆架灾害地质因素及其对海底管道的影响研究[D]. 青岛:中国科学院海洋研究所, 2011. Li Zewen. Research on hazardous geological factors in the outer shelf of Northern South China Sea and influence on the submarine pipelines[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2011.
    周川. 南海北部陆架外缘海底沙波分布规律及活动机理研究[D]. 青岛:中国科学院海洋研究所, 2013. Zhou Chuan. A study on the distribution and activity mechanism of sand waves on the Northern South China Sea Shelf[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2013.
    Ezer T, Arangoand H, Shchepetkin A F. Developments in terrain-following ocean models:intercomparisons of numerical aspects[J]. Ocean Modelling, 2002, 4(3/4):249-267.
    Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010,91(8), 1015-1057.
    Egbert G D, Bennett A F, Foreman M G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of Geophysical Research:Oceans (1978-2012), 1994, 99(C12):24821-24852.
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric & Oceanic Technology, 2002, 19(2):183-204.
    Gao S, Collins M B. Changes in sediment transport rates caused by wave action and tidal flow time-asymmetry[J]. Journal of Coastal Research, 1997, 13(1):198-201.
    陈宜展. 南海海洋响应台风过程数值研究[D]. 南京:中山大学, 2010:2-3. Chen Yizhan. Numerical study of the response of the South China Sea to typhoon[D]. Nanjing:Sun Yat-sen University, 2010:2-3.
    王桂付, 秦德生, 王云贵. 浅析台风的生成与发展规律[J]. 武汉航海:武汉航海职业技术学院学报, 2006, 1(4):5-8. Wang Guifu, Qin Desheng, Wang Yungui. Emergence and developing law of typhoon[J]. Wuhan Marine:Journal of Wuhan Marine College, 2006, 1(4):5-8.
    董志华. 台风对东方岸外沙波沙脊和海底地貌的影响[D]. 青岛:中国海洋大学, 2006. Dong Zhihua. The influence on current ridge, sand wave and topography of Dongfang offshore by typhoon[D]. Qingdao:Ocean University of China, 2006.
    马小川. 海南岛西南海域海底沙波沙脊形成演化及其工程意义[D]. 青岛:中国科学院海洋研究所, 2013. Ma Xiaochuan. Formation, evolution and engineering significance of submarine sand waves and sand ridges, southeast of Hainan Island[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2013.
    胡日军. 南海北部外陆架区海底沙波动态分析[D]. 青岛:中国海洋大学, 2006. Hu Rijun. Dynamical analysis of seafloor sandwaves in the outer continental shelf of the Northern South China Sea[D]. Qingdao:Ocean University of China, 2006.
    Simons D B, Richardson E V, Nordin C F Jr. Sedimentary structures generated by flow in alluvial channels[M]//Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa:SEPM Special Publication, 1965, 12:34-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (607) PDF downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return