Citation: | Jiang Zike, Yu Xinsheng, Jin Weiwei. Planar optode observation method for the effect of raindrop on dissolved oxygen and pH diffusion of air-water interface[J]. Haiyang Xuebao, 2018, 40(7): 134-142. doi: 10.3969/j.issn.0253-4193.2018.07.011 |
Wesslander K, Hall P, Hjalmarsson S, et al. Observed carbon dioxide and oxygen dynamics in a Baltic Sea coastal region[J]. Journal of Marine Systems, 2011, 86(1/2):1-9.
|
Lion L W, Leckie J O. The biogeochemistry of the air-sea interface[J]. Annual Review of Earth and Planetary Sciences, 1981, 9(1):449-484.
|
Baker A R, Landing W M, Bucciarelli E, et al. Trace element and isotope deposition across the air-sea interface:progress and research needs[J]. Philosophical Transactions of the Royal Society:A, 2016, 374(2081):0190.
|
Feely R A, Sabine C L, Hernandez-Ayon J M, et al. Evidence for upwelling of corrosive "acidified" water onto the continental shelf[J]. Science, 2008, 320(5882):1490-1492.
|
Booth J A T, McPhee-Shaw E E, Chua P, et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast[J]. Continental Shelf Research, 2012, 45(15):108-115.
|
Gobler C J, DePasquale E L, Griffith A W, et al. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves[J]. PloS one, 2014, 9(1):e83648.
|
Pörtner H O, Langenbuch M, Michaelidis B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals:From Earth history to global change[J]. Journal of Geophysical Research:Oceans, 2005, 110(C9):1-15.
|
Mackenzie F T, Lerman A, Andersson A J. Past and present of sediment and carbon biogeochemical cycling models[J]. Biogeosciences Discussions, 2004, 1(1):27-85.
|
Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research:Oceans, 1992, 97(C5):7373-7382.
|
Ho D T, Law C S, Smith M J, et al. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean:Implications for global parameterizations[J]. Geophysical Research Letters, 2006, 33(16):611.
|
Saylor J R, Handler R A. Gas transport across an air/water interface populated with capillary waves[J]. Physics of Fluids, 1997, 9(9):2529-2541.
|
Boettcher E J, Fineberg J, Lathrop D P. Turbulence and wave breaking effects on air-water gas exchange[J]. Physical Review Letters, 2000, 85(9):2030.
|
Lorke A, Peeters F. Toward a unified scaling relation for interfacial fluxes[J]. Journal of Physical Oceanography, 2006, 36(5):955-961.
|
Turk D, Zappa C J, Meinen C S, et al. Rain impacts on CO2 exchange in the western equatorial Pacific Ocean[J]. Geophysical Research Letters, 2010, 37(23):610.
|
Ho D T, Bliven L F, Wanninkhof R I K, et al. The effect of rain on air-water gas exchange[J]. Tellus B, 1997, 49(2):149-158.
|
Harrison E L, Veron F, Ho D T, et al. Nonlinear interaction between rain-and wind-induced air-water gas exchange[J]. Journal of Geophysical Research:Oceans, 2012, 117(C3):034.
|
McGillis W R, Edson J B, Zappa C J, et al. Air-sea CO2 exchange in the equatorial Pacific[J]. Journal of Geophysical Research:Oceans, 2004, 109(C8):S02.
|
Huttunen J T, Väisänen T S, Heikkinen M, et al. Exchange of CO2, CH4 and N2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests[J]. Plant and Soil, 2002, 242(1):137-146.
|
Ashton I G, Shutler J D, Land P E, et al. A sensitivity analysis of the impact of rain on regional and global sea-air fluxes of CO2[J]. PloS One, 2016, 11(9):e0161105.
|
Cunliffe M, Engel A, Frka S, et al. Sea surface microlayers:A unified physicochemical and biological perspective of the air-ocean interface[J]. Progress in Oceanography, 2013, 109(1):104-116.
|
Glud R N, Ramsing N B, Gundersen J K, et al. Planar optrodes:a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress Series, 1996,140(1):217-226.
|
Sánchez-Barragán I, Costa-Fernández J M, Sanz-Medel A, et al. A ratiometric approach for pH optosensing with a single fluorophore indicator[J]. Analytica Chimica Acta, 2006, 562(2):197-203.
|
Amelia M, Lavie-Cambot A, McClenaghan N D, et al. A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot[J]. Chemical Communications, 2011, 47(1):325-327.
|
Jiang Z, Yu X, Hao Y. Design and fabrication of a ratiometric planar optode for simultaneous imaging of pH and oxygen[J]. Sensors, 2017, 17(6):1316.
|
Uyeda H T, Medintz I L, Jaiswal J K, et al. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores[J]. Journal of the American Chemical Society, 2005, 127(11):3870-3878.
|
Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature Biotechnology, 2001, 19(7):631-635.
|
Amao Y, Miyashita T, Okura I. Optical oxygen sensing based on the luminescence change of metalloporphyrins immobilized in styrene-pentafluorostyrene copolymer film[J]. Analyst, 2000, 125(5):871-875.
|
Rudolph-Mohr N, Vontobel P, Oswald S E. A multi-imaging approach to study the root-soil interface[J]. Annals of Botany, 2014, 114(8):1779-1787.
|
Oguri K, Kitazato H, Glud R N. Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source:An ideal tool for high-resolution O2 imaging in O2 depleted environments[J]. Marine Chemistry, 2006, 100:95-107.
|