Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Hu Dong, Chen Xi, Zhao Yanling, Li Yan, Mao Kefeng, Jiang Hongfeng, Wang Dongliang. Statistical characteristics of mesoscale eddies in the two western boundary current extension regions[J]. Haiyang Xuebao, 2018, 40(6): 15-28. doi: 10.3969/j.issn.0253-4193.2018.06.002
Citation: Hu Dong, Chen Xi, Zhao Yanling, Li Yan, Mao Kefeng, Jiang Hongfeng, Wang Dongliang. Statistical characteristics of mesoscale eddies in the two western boundary current extension regions[J]. Haiyang Xuebao, 2018, 40(6): 15-28. doi: 10.3969/j.issn.0253-4193.2018.06.002

Statistical characteristics of mesoscale eddies in the two western boundary current extension regions

doi: 10.3969/j.issn.0253-4193.2018.06.002
  • Received Date: 2017-07-13
  • Rev Recd Date: 2017-10-30
  • Kuroshio and Gulf Stream are the two most typical western boundary currents in the world's ocean, and mesoscale eddies are very active in Kuroshio Extention (KE) and Gulf Stream extension (GSE) regions. In this paper, surface features of mesoscale eddies in KE and GSE regions and their effects on temperature and salinity fields are studied and compared using satellite altimeter data and Argo buoy data. The results show that eddy frequency is extremely high and eddy intensity is obviously larger near the main axes of both Kuroshio and Gulf stream, and cyclonic eddies (CE) and anticyclonic eddies (AE) dominate in the south and north sides of the main axes, respectively. Most eddies propagate westward with a little southward (equatorward) deflection. The amount of eddies in the two regions are both larger in summer and autumn, and eddy intensities are larger in spring and summer, meanwhile intensities of eddies in GSE are larger than those in KE. CE (AE) cause consistent negative (positive) temperature anomaly. CE (AE) in KE represent "negative-positive" ("positive-negative") salinity anomaly distribution from upper to lower layers, while CE (AE) in GSE exhibit a more consistent negative (positive) salinity anomaly in each layer. The average effect of mesoscale eddies on temperature and salinity fields in the two regions can reach more than 1 000×104 Pa depths.
  • loading
  • Souza J M A C, De Montégut C D, Le Traon P Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3):317-334.
    Qiu B. Seasonal eddy field modulation of the North Pacific subtropical countercurrent:TOPEX/Poseidon observations and theory[J]. Journal of Physical Oceanography, 1999, 29(10):2471-2486.
    Ferrari R, Wunsch C. Ocean circulation kinetic energy:Reservoirs, sources, and sinks[J]. Annual Review of Fluid Mechanics, 2009, 41(1):253-282.
    Yang Y, Liang X S. The instabilities and multiscale energetics underlying the mean-interannual-eddy interactions in the Kuroshio extension region[J]. Journal of Physical Oceanography, 2016, 46(5):1477-1494.
    Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):L15606.
    Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216.
    Yang Yang, Liang Xiangsan, Qiu Bo, et al. On the decadal variability of the eddy kinetic energy in the Kuroshio extension[J]. Journal of Physical Oceanography, 2017, 47(5):1169-1187.
    Jia Yinglai, Chassignet E P. Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait[J]. Journal of Oceanography, 2011, 67(5):601-611.
    Chen Gengcxin, Hu Po, Hou Yijun, et al. Intrusion of the Kuroshio into the South China Sea, in September 2008[J]. Journal of Oceanography, 2011, 67(4):439-448.
    Zamudio L, Hurlburt H E, Metzger E J, et al. Tropical wave-induced oceanic eddies at Cabo Corrientes and the María Islands, Mexico[J]. Journal of Geophysical Research:Oceans, 2007, 112(C5):C05048.
    郑聪聪, 杨宇星, 王法明. 北太平洋中尺度涡时空特征分析[J]. 海洋科学, 2014, 38(10):105-112. Zheng Congcong, Yang Yuxing, Wang Faming. Spatial-temporal features of eddies in the North Pacific[J]. Marine Sciences, 2014, 38(10):105-112.
    洪森, 胡冬, 陈希, 等. 湾流及其邻近海域中尺度涡统计特征分析[J]. 解放军理工大学学报, 2016, 17(5):459-466. Hong Sen, Hu Dong, Chen Xi, et al. Statistical characteristics of mesoscale eddies in the Gulf Stream and its adjacent sea[J]. Journal of PLA University of Science and Technology, 2016, 17(5):459-466.
    Cheng Yu-Hsin, Ho Chung-Ru, Zheng Quanan, et al. Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry[J]. Remote Sensing, 2014, 6(6):5164-5183.
    徐驰, 陈桂英, 尚晓东, 等. 海洋中尺度涡旋源汇空间分布特征研究[J]. 热带海洋学报, 2013, 32(2):37-46. Xu Chi, Chen Guiying, Shang Xiaodong, et al. The spatial distribution of sources and sinks of ocean mesoscale eddies[J]. Journal of Tropical Oceanography, 2013, 32(2):37-46.
    程旭华, 齐义泉. 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. 海洋科学进展, 2008, 26(4):447-453. Cheng Xuhua, Qi Yiquan. Distribution and propagation of mesoscale eddies in the global oceans learnt from altimetric data[J]. Advances in Marine Science, 2008, 26(4):447-453.
    Kitano K. Some properties of the warm eddies generated in the confluence zone of the kuroshio and oyashio currents[J]. Journal of Physical Oceanography, 1975, 5(2):245-252.
    Inagake D. Statistics of the Kukroshio warm-core ring migration by historical data from 1981 to July 1996(in Japanese with English abstract)[J]. Bull. Tohoku Reg. Fish. Res. Inst., 1997, 59:149-162.
    Parker C E. Gulf stream rings in the Sargasso Sea[J]. Deep Sea Research and Oceanographic Abstracts, 1971, 18(10):981-993.
    李立. 湾流锋面涡旋的三维结构[J]. 海洋与湖沼, 1988, 19(3):295-299. Li Li. Notes on 3-dimensional structure of Gulf Stream frontal eddies[J]. Oceanologia et Limnologia Sinica, 1988, 19(3):295-299.
    Itoh S, Yasuda I. Characteristics of mesoscale eddies in the Kuroshio-Oyashio extension region detected from the distribution of the sea surface height anomaly[J]. Journal of Physical Oceanography, 2010, 40(5):1018-1034.
    Itoh S, Yasuda I. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific[J]. Journal of Physical Oceanography, 2010, 40(12):2624-2642.
    崔伟, 王伟, 马毅, 等. 基于1993-2014年高度计数据的西北太平洋中尺度涡识别和特征分析[J]. 海洋学报, 2017, 39(2):16-28. Cui Wei, Wang Wei, Ma Yi, et al. Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993-2014 based on altimetry data[J]. Haiyang Xuebao, 2017, 39(2):16-28.
    Kang Dujuan, Curchitser E N. Gulf Stream eddy characteristics in a high-resolution ocean model[J]. Journal of Geophysical Research:Oceans, 2013, 118(9):4474-4487.
    Stammer D, Wunsch C. Temporal changes in eddy energy of the oceans[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 1999, 46(1):77-108.
    Scharffenberg M G, Stammer D. Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1tandem mission data[J]. Journal of Geophysical Research:Oceans, 2010, 115(C2):C02008.
    Zhai Xiaoming, Greatbatch R J, Kohlmann J D. On the seasonal variability of eddy kinetic energy in the Gulf Stream region[J]. Geophysical Research Letters, 2008, 35(24):L21609.
    Aoki S, Imawaki S, Ichikawa K. Baroclinic disturbances propagating westward in the Kuroshio Extension region as seen by a satellite altimeter and radiometers[J]. Journal of Geophysical Research:Oceans, 1995, 100(C1):839-855.
    Wang Liping, Koblinsky C J. Low-frequency variability in regions of the Kuroshio Extension and the Gulf Stream[J]. Journal of Geophysical Research Oceans, 1995, 100(C9):18313-18331.
    Mizuno K, White W B. Annual and interannual variability in the Kuroshio current system[J]. Journal of Physical Oceanography, 1983, 13(10):1847-1867.
    Qiu Bo, Kelly K A, Joyce T M. Mean flow and variability in the Kuroshio Extension from Geosat altimetry data[J]. Journal of Geophysical Research:Oceans, 1991, 96(C10):18491-18507.
    郑聪聪, 訚忠辉, 梁永春, 等. 北太平洋中尺度涡温度垂直结构区域差别分析[J]. 海洋预报, 2017, 34(3):10-16. Zheng Congcong, Yin Zhonghui, Liang Yongchun, et al. Analysis of the eddy vertical structure in different areas in the North Pacific[J]. Marine Forecasts, 2017, 34(3):10-16.
    Waterman S, Hogg N G, Jayne S R. Eddy-Mean flow interaction in the Kuroshio Extension region[J]. Journal of Physical Oceanography, 2011, 41(6):1182-1208.
    Wong A P S, Johnson G C, Owens W B. Delayed-Mode Calibration of autonomous CTD profiling float salinity data by θ-S climatology[J]. Journal of Atmospheric & Oceanic Technology, 2010, 20(2):308-318.
    Chaigneau A, Texier M L, Eldin G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean:A composite analysis from altimetry and Argo profiling floats[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(C11):C11025.
    Akima H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM, 1970, 17(4):589-602.
    Nencioli F, Dong Changming, Dickey T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3):564.
    Dong Changming, Mcwilliams J C, Liu Yu, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5:3294.
    祖永灿, 方越, 高晓倩, 等. 北太平洋中尺度涡季节和年际变化的统计分析[J]. 海洋科学进展, 2016, 34(2):197-206. Zu Yongcan, Fang Yue, Gao Xiaoqian, et al. Seasonal and Interannual variation of mesoscale eddies in the North Pacific Ocean:A statistical analysis[J]. Advances in Marine Science, 2016, 34(2):197-206.
    胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9):1-14. Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9):1-14.
    Liang X S, Anderson D G M. Multiscale window transform[J]. Multiscale Modeling & Simulation, 2007, 6(2):437-467.
    Liang X S. Canonical transfer and multiscale energetics for primitive and quasi-geostrophic atmospheres[J]. Journal of the Atmospheric Sciences, 2016, 73(11):4439-4468.
    Yang Guang, Wang Fan, Li Yuanlong, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean:Statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research:Oceans, 2013, 118(4):1906-1925.
    Chaigneau A, Eldin G, Dewitte B. Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007)[J]. Progress in Oceanography, 2009, 83(1/4) 117-123.
    Morrow R, Birol F, Griffin D, et al. Divergent pathways of cyclonic and anti-cyclonic ocean eddies[J]. Geophysical Research Letters, 2004, 31(24):L24311.
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research:Oceans, 2011, 116(C6):C06018.
    Sangrà P, Pascual A, Rodríguez-Santana Á, et al. The canary eddy corridor:a major pathway for long-lived eddies in the subtropical North Atlantic[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2009, 56(12):2100-2114.
    Tatebe H, Yasuda I. Seasonal axis migration of the upstream Kuroshio Extension associated with standing oscillations[J]. Journal of Geophysical Research:Oceans, 2001, 106(C8):16685-16692.
    Nan Feng, He Zhigang, Zhou Hui, et al. Three long-lived anticyclonic eddies in the northern South China Sea[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(C5):C05002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (862) PDF downloads(425) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return