Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Song Tengfei, Wang Honglei, Chen Yixin, Li Chaoxin, Zhu Aimei, Bai Yazhi, Shi Xuefa, Gorbarenko Sergei, Bosin Aleksandr, Liu Yanguang. Paleoproductivity changes in the northern Bering Slope over the last 23 ka and the response to the sea-ice evolution[J]. Haiyang Xuebao, 2018, 40(5): 90-106. doi: 10.3969/j.issn.0253-4193.2018.05.008
Citation: Song Tengfei, Wang Honglei, Chen Yixin, Li Chaoxin, Zhu Aimei, Bai Yazhi, Shi Xuefa, Gorbarenko Sergei, Bosin Aleksandr, Liu Yanguang. Paleoproductivity changes in the northern Bering Slope over the last 23 ka and the response to the sea-ice evolution[J]. Haiyang Xuebao, 2018, 40(5): 90-106. doi: 10.3969/j.issn.0253-4193.2018.05.008

Paleoproductivity changes in the northern Bering Slope over the last 23 ka and the response to the sea-ice evolution

doi: 10.3969/j.issn.0253-4193.2018.05.008
  • Received Date: 2017-11-08
  • Rev Recd Date: 2018-02-09
  • The gravity core ARC6-B11 recovered from the northern Bering Slope was analyzed to reconstruct the sedimentary record and paleoproductivity changes from 23 ka BP to the Middle Holocene. Based on geochemical, high-resolution core logging and AMS14C data the variation of sediment input and productivity of the study area and it's response to the sea-ice evolution were discussed. Our results demonstrate that, on account of the southern extended sea-ice, the paleoproductivity is low during the Last Glacial Maximum, while the sand and ice rafting debris (IRD) contents of the sediments are high. But the sand and IRD contents decreased sharply during Heinrich Stadial 1 (HS 1) cold period because of the perennial sea-ice cover. The total organic carbon (TOC) content peaks during HS 1 could not be used as the paleoproductivity indicator due to the influence of the terrigenous organic matter. The abnormal peak value of the TOC content may relates to the redisposition of the shelf clay matter suspended by the oxygen enriched water mass influenced by the sea level change and sea-ice formation. The paleoproductivity is high during Bølling/Allerød (B/A) and Holocene warm period, there are also Ca Peak Event and sedimentary laminae. The occurrence of Ca Peak Event in the B/A warming period is directly influenced by the deepening of carbonate compensation depth, but the alteration of ventilation and the coccolith bloom may play a certain role on it.
  • loading
  • Cook M S, Keigwin L D, Sancetta C A. The deglacial history of surface and intermediate water of the Bering Sea[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(16):2163-2173.
    Gorbarenko S A, Basov I A, Chekhovskaya M P, et al. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene:Geochemical and paleontological evidence[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(16/18):2174-2185.
    Okazaki Y, Takahashi K, Asahi H. Productivity changes in the Bering Sea during the late Quaternary[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(16):2150-2162.
    Itaki T, Uchida M, Kim S, et al. Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments:evidence from the radiolarian species Cycladophora davisiana[J]. Journal of Quaternary Science, 2009, 24(8):856-865.
    Brunelle B G, Sigman D M, Cook M S, et al. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes[J]. Paleoceanography, 2007, 22(1):306-316.
    Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in subarctic North Pacific stratification[J]. Science, 2005, 308(5724):1003-1006.
    Springer A M, Mcroy C P, Flint M V. The Bering Sea Green Belt:shelf-edge processes and ecosystem production[J]. Fisheries Oceanography, 2010, 5(3/4):205-223.
    Tyrrell T, Merico A, Waniek J J, et al. Effect of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) regions[J]. Journal of Geophysical Research Biogeosciences, 2015, 110(G2):149-167.
    Stabeno P J, Schumacher J D. The Physical Oceanography of the Bering Sea[J]. University of Alaska Sea Grant, 1999, 4(10):385.
    Harada N, Katsuki K, Nakagawa M, et al. Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas[J]. Progress in Oceanography, 2014, 126(4):242-253.
    Rella S F, Tada R, Nagashima K, et al. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period[J]. Paleoceanography, 2012, 27(3):189-200.
    Kim S, Khim B K, Uchida M, et al. Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs[J]. Global & Planetary Change, 2011, 79(1/2):89-98.
    Kuehn H, Lembkejene L, Gersonde R, et al. Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation[J]. Climate of the Past Discussions, 2014, 10(3):2215-2236.
    Crusius J, Pedersen T F, Kienast S, et al. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling-Allerød interval (14.7-12.9 ka)[J]. Geology, 2004, 32(7):633-636.
    Ohkushi K, Itaki T, Nemoto N. Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific[J]. Quaternary Science Reviews, 2003, 22(14):1477-1484.
    Zheng Y, Geen A V, Anderson R F, et al. Intensification of the Northeast Pacific oxygen minimum zone during the Bölling-Alleröd Warm Period[J]. Paleoceanography, 2000, 15(5):528-536.
    Cook M S, Ravelo A C, Mix A, et al. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2016, 125:84-95.
    Caissie B E, Brigham-Grette J, Lawrence K T, et al. Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records[J]. Paleoceanography, 2010, 25(1):427-435.
    Max L, Lembkejene L, Riethdorf J R, et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation[J]. Climate of the Past, 2014, 10(2):591-605.
    Schlung S A, Ravelo A C, Aiello I W, et al. Millennial-scale climate change and intermediate water circulation in the Bering Sea from 90 ka:A high-resolution record from IODP Site U1340[J]. Paleoceanography, 2013, 28(1):54-67.
    Meyer V D, Max L, Hefter J, et al. Glacial-to-Holocene evolution of sea surface temperature and surface circulation in the subarctic northwest Pacific and the Western Bering Sea[J]. Paleoceanography, 2016, 31(7):916-927.
    Niebauer H J. Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996[J]. Journal of Geophysical Research, 1998, 103(103):27717-27737.
    Feely R A, Sabine C L, Lee K, et al. In situ calcium carbonate dissolution in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2002, 16(4):1144.
    Riethdorf J R, Nürnberg D, Max L, et al. Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr[J]. Climate of the Past, 2013, 9(3):1345-1373.
    Max L, Riethdorf J R, Tiedemann R, et al. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years[J]. Paleoceanography, 2012, 27(3):PA3213.
    Méheust M, Fahl K, Stein R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea:Reconstruction from biomarker data[J]. Organic Geochemistry, 2013, 57(4):54-64.
    Gorbarenko S A, Wang P, Wang R, et al. Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 286(2):97-106.
    Méheust M, Stein R, Fahl K, et al. High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years[J]. Geo-Marine Letters, 2016, 36(2):101-111.
    陈志华, 陈毅, 王汝建,等. 末次冰消期以来白令海盆的冰筏碎屑事件与古海洋学演变记录[J]. 极地研究, 2014, 26(1):17-28. Chen Zhihua, Chen Yi, Wang Rujian, et al. Ice-rafted detritus events and Paleoceanographic records in the Bering Basin since the Last Deglaciation[J]. Chinese Journal of Polar Research, 2014, 26(1):17-28.
    王磊, 王汝建, 陈志华,等. 白令海盆17 ka以来的古海洋与古气候记录[J]. 极地研究, 2014(1):29-38. Wang Lei, Wang Ruijian, Chen Zhihua, et al. Paleoceanographic and paleocliamtic records in the Bering Basin over the last 17 ka[J]. Chinese Journal of Polar Research, 2014, 26(1):29-38.
    Kanematsu Y, Takahashi K, Kim S, et al. Changes in biogenic opal productivity with Milankovitch cycles during the last 1.3 Ma at IODP Expedition 323 Sites U1341, U1343, and U1345 in the Bering Sea[J]. Quaternary International, 2013, 310:213-220.
    Khim B K, Kim S, Uchida M, et al. High organic carbon deposition in the northern margin of the Aleutian Basin (Bering Sea) before the last deglaciation[J]. Ocean Science Journal, 2010, 45(4):203-211.
    胡利民, 石学法, 刘焱光,等. 白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录[J]. 海洋地质与第四纪地质, 2015, 35(3):37-47. Hu Limin, Shi Xuefa, Liu Yanguang, et al. Geochemical charicteristics and burial records of organic carbon in the colunm sediments from western Bering Sea[J]. Marine Geology and Quaternary Geology, 2015, 35(3):37-47.
    邹建军, 石学法, 白亚之,等. 末次冰消期以来白令海古环境及古生产力演化[J]. 地球科学:中国地质大学学报, 2012, 37(S1):1-10. Zou Jianjun, Shi Xuefa, Bai Yazhi, et al. Paleoenvironment and paleoproductivity variations in the Bering Sea since the last deglacial[J]. Earth Science:Journal of China University of Geoscience, 2012, 37(S1):1-10.
    王汝建, 李霞, 肖文申,等. 白令海北部陆坡100 ka来的古海洋学记录及海冰的扩张历史[J]. 地球科学:中国地质大学学报, 2005, 30(5):550-558. Wang Rujian, Li Xia, Xiao Wenshen, et al. Paleoceangraphic records and sea ice extension history of the northern Bering Sea slope over the last 100 ka[J]. Earth Science:Journal of China University of Geoscience, 2005, 30(5):550-558.
    Gorbarenko S A. Stable isotope and lithologic evidence of Late-Glacial and Holocene oceanography of the northwestern Pacific and its marginal seas[J]. Quaternary Research, 1996, 46(3):230-250.
    Vanlaningham S, Pisias N G, Duncan R A, et al. Glacial-interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean:Evidence for timing of Beringian outwashing[J]. Earth & Planetary Science Letters, 2009, 277(1/2):64-72.
    王春娟, 刘焱光, 董林森,等. 白令海与西北冰洋表层沉积物粒度分布特征及其环境意义[J]. 海洋地质与第四纪地质, 2015, 35(3):1-9. Wang Chunjuan, Liu Yanguang, Dong Linsen,et al. The distribution pattern of the surface sediments in the Bering Sea and the western Arctic and its environmental implications[J]. Marine Geology and Quaternary Geology, 2015, 35(3):1-9.
    张海峰, 王汝建, 陈荣华,等. 白令海北部陆坡全新世以来的生物标志物记录及其古环境意义[J]. 极地研究, 2014(1):1-16. Zhang Haifeng, Wang Ruijian, Chen Ronghua, et al. Holocene biomarker records on the northern Bering Sea slope their paleoenvironmental implications[J]. Chinese Journal of Polar Research, 2014(1):1-16.
    Kent D, Opdyke N D, Ewing M. Climate change in the north Pacific using ice-rafted detritus as a climatic indicator[J]. Geological Society of America Bulletin, 1971, 82(10):2741-2754.
    王汝建, 肖文申, 李文宝,等. 北冰洋西部楚科奇海盆晚第四纪的冰筏碎屑事件[J]. 科学通报, 2009(23):3761-3770. Wang Rujian, Xiao Wenshen, Li Wenbao, et al. Late Quaternary ice-rafted detritus events in the Chukchin Basin, western Arctic Ocean[J]. Chinese Science Bulletin, 2009(23):3761-3770.
    Sampei Y, Matsumoto E. C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan-usefulness as an organic source indicator[J]. Geochemical Journal, 2008, 35(35):189-205.
    Andersen K K, Azuma N, Barnola J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period.[J]. Nature, 2004, 431(7005):147.
    陈皎杰, 刘焱光, 葛淑兰,等. 末次盛冰期以来兴凯湖的古环境演变——基于地磁场长期变化的年龄框架[J]. 第四纪研究, 2014, 34(3):528-539. Chen Jiaojie, Liu Yanguang, Ge Shulan, et al. Paleoenvironment evolution of the lake Khanka since the Last Glacial Maximium:age model reconstructed by secular variation of geomagnetic field[J]. Quaternary Sciences, 2004, 34(3):528-539.
    Blum P. Physical properties handbook:a guide to the shipboard measurement of physical properties of deep-sea cores[OL/EB]. 2017-10-30.http://www-odp.tamu.edu/publications/tnotes/tn26/TOC.HTM
    Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2008, 27(2):114-127.
    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4):289-302.
    Chengjun Z, Wanyi Z, Rong F. Early diagenesis impacting C/N and organic isotopic compositions in the lacustrince sediments[J]. Journal of Earth Environment, 2012, 3(4):1005-1012.
    Astakhov A, Bosin A, Kolesnik A, et al. Sediment geochemistry and diatom distribution in the Chukchi Sea:Application for bioproductivity and paleoceanography[J]. Oceanography, 2015, 28(3):190-201.
    Ren J, Gersonde R, Esper O, et al. Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 402(4):81-103.
    Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43):15296-15303.
    Gebhardt H, Sarnthein M, Grootes P M, et al. Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V[J]. Paleoceanography, 2008, 23(4):430-434.
    黄元辉, 石学法, 葛淑兰,等. 白令海深海异常沉积特征及成因分析[J]. 极地研究, 2014, 26(1):39-45. Huang Yuanhui, Shi Xuefa, Ge Shulan, et al. Characteristics of abnormal deep-sea sediments in the Bering Sea and their possible causes[J]. Chinese Journal of Polar Research, 2014, 26(1):39-45.
    Sancetta C, Heusser L, Labeyrie L, et al. Holocene paleoenvironment of the Bering Sea:Evidence from diatoms, pollen, oxygen isotopes and clay minerals[J]. Marine Geology, 1984, 62(1/2):55-68.
    Smirnova M A, Kazarina G K, Matul A G, et al. Diatom evidence for paleoclimate changes in the northwestern Pacific during the last 20000 years[J]. Oceanology, 2015, 55(3):383-389.
    Brunelle B G, Sigman D M, Jaccard S L, et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum[J]. Quaternary Science Reviews, 2010, 29(19/20):2579-2590.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (884) PDF downloads(360) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return