Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
He Fei, Chen Jie, Jiang Changbo, Zhao Jing. Effects of wave nonlinearity on wave attenuation by seagrass[J]. Haiyang Xuebao, 2018, 40(5): 24-36. doi: 10.3969/j.issn.0253-4193.2018.05.003
Citation: He Fei, Chen Jie, Jiang Changbo, Zhao Jing. Effects of wave nonlinearity on wave attenuation by seagrass[J]. Haiyang Xuebao, 2018, 40(5): 24-36. doi: 10.3969/j.issn.0253-4193.2018.05.003

Effects of wave nonlinearity on wave attenuation by seagrass

doi: 10.3969/j.issn.0253-4193.2018.05.003
  • Received Date: 2017-05-02
  • Rev Recd Date: 2017-09-13
  • The shoreline erosion could be efficiently protected by the system of wave attenuation composed of seagrass. The primary objective of the study based on the experiment of Sánchez-González was to investigate the effects of wave nonlinearity on wave dissipation by seagrass. The results showed that the effects of wave steepness and relative water depth on wave damping factor depend on the submergence ratio of seagrass. For a given relative wave height, the drag coefficient increased with an increasing relative water depth. For a given relative water depth, the drag coefficient decreased as wave steepness increased. There were some differences between regular and irregular wave conditions for the effects of wave nonlinearity on wave attenuation. Whether dimensionless parameters, such as Keulegan-Carpenter, Reynolds number, Ursell number, are a better predictor of drag coefficients or not depends on accounting for the effects of wave nonlinearity on drag coefficients.
  • loading
  • 韩秋影, 施平. 海草生态学研究进展[J]. 生态学报, 2008, 28(11):5561-5570. Han Qiuying, Shi Ping. Progress in the study of seagrass ecology[J]. Acta Ecologica Sinica, 2008, 28(11):5561-5570.
    Lewis M A, Dantin D D, Chancy C A, et al. Florida seagrass habitat evaluation:a comparative survey for chemical quality[J]. Environmental Pollution, 2007, 146(1):206-218.
    Bouma T J, De Vries M B, Low E, et al. Trade-offs related to ecosystem engineering:A case study on stiffness of emerging macrophytes[J]. Ecology, 2005, 86(8):2187-2199.
    傅宗甫. 互花米草消浪效果试验研究[J]. 水利水电科技进展, 1997(5):45-47. Fu Zongfu. Experimental investigation of wave damping of Spartina alterniflora[J]. Advance in Science and Technology of Water Resource, 1997(5):45-47.
    陈德春, 周家苞. 人工水草缓流和消波研究[J]. 河海大学学报:自然科学版, 1998(5):99-103. Chen Dechun, Zhou Jiabao. A study of the effect of artificial seaweeds on current slowing and wave absorbing[J]. Journal of Hohai University:Natural Sciences, 1998(5):99-103.
    Dubi A, Torum A. Wave Damping by Kelp Vegetation[C]//Coastal Engineering. ASCE, 1995:142-156.
    Bradley K, Houser C. Relative velocity of seagrass blades:Implications for wave attenuation in low-energy environments[J]. Journal of Geophysical Research Earth Surface, 2009, 114(F1):206-218.
    Luhar M, Nepf H M. Wave-induced dynamics of flexible blades[J]. Journal of Fluids & Structures, 2015, 61:20-41.
    Vasiliki Stratigaki, Eleonora Manca, Panayotis Prinos, et al. Large-scale experiments on wave propagation over Posidonia oceanica[J]. Journal of Hydraulic Research, 2011, 49(S1):31-43.
    Infantes E, Orfila A, Simarro G, et al. Effect of a seagrass (Posidonia oceanica) meadow on wave propagation[J]. Marine Ecology Progress, 2012, 456(6):63-72.
    Manca E, Cáceres I, Alsina J M, et al. Wave energy and wave-induced flow reduction by full-scale model Posidonia oceanica, seagrass[J]. Continental Shelf Research, 2012, S50/51(1):100-116.
    Ma G, Kirby J T, Su S F, et al. Numerical study of turbulence and wave damping induced by vegetation canopies[J]. Coastal Engineering, 2013, 80(4):68-78.
    Dalrymple R A, Kirby J T, Hwang P A. Wave diffraction due to areas of energy dissipation[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1984, 110(1):142-150.
    Kobayashi N, Raichle A W, Asano T. Wave attenuation by vegetation[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1993, 119(1):30-48.
    Asano T, Deguchi H, Kobayashi N. Interaction between water waves and vegetation[C]//Coastal Engineering (1992). ASCE, 1993:2710-2723.
    Méndez F J, Losada I J, Losada M A. Hydrodynamics induced by wind waves in a vegetation field[J]. Journal of Geophysical Research Oceans, 1999, 104(C8):18383-18396.
    José Francisco Sánchez-González, Virginia Sánchez-Rojas, Constantine Demetrius Memos. Wave attenuation due to Posidonia oceanica meadows[J]. Journal of Hydraulic Research, 2011, 49(4):503-514.
    Mendez F J, Losada I J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields[J]. Coastal Engineering, 2004, 51(2):103-118.
    Wu W C, Cox D T. Effects of wave steepness and relative water depth on wave attenuation by emergent vegetation[J]. Estuarine Coastal & Shelf Science, 2015, 164:443-450.
    Goda Y. Random seas and design of maritime structures[M]. Singapore:World Scientific Publishing Co. Pte. Ltd.,1924:732.
    陈杰, 何飞, 蒋昌波, 等. 规则波作用下刚性植物拖曳力系数实验研究[J]. 水利学报, 2017, 48(7):846-857. Chen Jie, He Fei, Jiang Changbo, et al. Experimental investigation on drag coefficient of rigid vegetation influenced by regular waves[J]. Journal of Hydraulic Engineering, 2017, 48(7):846-857.
    Li Y, Anim D O, Wang Y, et al. Laboratory simulations of wave attenuation by an emergent vegetation of artificial Phragmites australis:an experimental study of an open-channel wave flume[J]. Journal of Environmental Engineering & Landscape Management, 2015, 23(4):1-10.
    Anderson M E, Smith J M. Wave attenuation by flexible, idealized salt marsh vegetation[J]. Coastal Engineering, 2014, 83:82-92.
    Augustin L N, Irish J L, Lynett P. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation[J]. Coastal Engineering, 2009, 56(3):332-340.
    Nepf H M, Vivoni E R. Flow structure in depth-limited, vegetated flow[J]. Journal of Geophysical Research Oceans, 2000, 105(C12):28547-28557.
    章家昌.防浪林的消波性能[J]. 水利学报, 1966(2):49-52. Zhang Jiachang. Characteristic of wave dissipation by wave-break forest[J]. Journal of Hydraulic Engineering, 1966(2):49-52.
    陈杰, 赵静, 蒋昌波, 等. 非淹没刚性植物对规则波传播变形影响实验研究[J]. 海洋通报, 2017(2):222-229. Chen Jie, Zhao Jing, Jiang Changbo, et al. Laboratory investigation on the effects of emergent rigid vegetation on the regular wave transformation[J]. Marin Science Bulletin, 2017(2):222-229.
    杨建民.海岸带边坡防浪林消浪理论与实验研究[J]. 海洋通报, 2008, 27(2):16-21. Yang Jianmin. Analytical solution and physical model test of wave protection forest on coastal zones[J]. Marine Science Bulletin, 2008, 27(2):16-21.
    John B M, Shirlal K G, Rao S. Effect of artificial vegetation on wave attenuation-an experimental investigation[J]. Procedia Engineering, 2015, 116(1):600-606.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (600) PDF downloads(372) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return