Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Xie Xudan, Wang Jing, Chu Xiaoqing, Cheng Xuhua. Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea[J]. Haiyang Xuebao, 2018, 40(4): 1-14. doi: 10.3969/j.issn.0253-4193.2018.04.001
Citation: Xie Xudan, Wang Jing, Chu Xiaoqing, Cheng Xuhua. Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea[J]. Haiyang Xuebao, 2018, 40(4): 1-14. doi: 10.3969/j.issn.0253-4193.2018.04.001

Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea

doi: 10.3969/j.issn.0253-4193.2018.04.001
  • Received Date: 2017-03-15
  • Rev Recd Date: 2017-10-11
  • Used the Sea Level Anomaly data during 1994 to 2015, based on the winding-angle eddy detection algorithm, total of 5 899 anticyclonic eddies (AE) and 3 792 cyclonic eddies (CE) in the SCS are identified. With the profiles from the WOD13 and the SCSIO, the 3-D thermohaline anomaly structures are constructed in the SCS and its different area with the objective interpolation approach based on the variational analysis. The results show that the proposed revised interpolation approach can simulate the boundary of eddies effectively, and ensure the correct eddies shape. Generally speaking, AE's intensity are obviously stronger than CE's. AE maintain its main structure till approximately 440 m depth while CE only remain stable above 320 m. Both of the maximum potential temperature anomalies appear in about 80m depth, 2.02℃ for AE and -1.60℃ for CE. The affecting depth of salinity anomaly of eddies reach to 150 m depth around and the maximum anomalies induced by AE and CE are -0.24 and 0.28, respectively, which occur near the depth of 50 m. Meanwhile, the structure of salinity anomaly of AE seems to be positive on the top and negative on the bottom, just opposite to CE,which attributed to the sea water sinking (rising) induced by AE(CE). The temperature anomalies in each area of the SCS are not quite consistent with the salinity anomalies, which may attributed to the background thermohaline fields and different formation mechanism of eddies.
  • loading
  • Hwang Cheinway, Chen Sungan. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research Atmospheres, 2000, 105(C10):23943-23966.
    Wang Guihua, Su Jilan, Peter C C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21):OCE 6-1-6-4.
    程旭华, 齐义泉, 王卫强. 南海中尺度涡的季节和年际变化特征分析[J]. 热带海洋学报, 2005, 24(4):51-59. Cheng Xuhua, Qi Yiquan, Wang Weiqiang. Seasonal and interannual variabilities of mesoscale eddies in South China Sea[J]. Journal of Tropical Oceanography, 2005, 24(4):51-59.
    Dong Changming, Lin Xiayan, Liu Yu, et al. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product[J]. Journal of Geophysical Research Oceans, 2012, 117(C7):92-99.
    Lin Xiayan, Dong Changming, Chen Dake, et al. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2015, 99:46-64.
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research Oceans, 2011, 116(C6):102-108.
    Chen Gengxin, Hou Yijun, Chu Xiaoqing et al. Vertical structure and evolution of the Luzon Warm Eddy[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(5):955-961.
    Chen Gengxin, Hou Yijun, Zhang Qilong, et al. The eddy pair off eastern Vietnam:Interannual variability and impact on thermohaline structure[J]. Continental Shelf Research, 2010, 30(7):715-723.
    Chu Xiaoqing, Xue Huijie, Qi Yiquan, et al. An exceptional anticyclonic eddy in the South China Sea in 2010[J]. Journal of Geophysical Research Oceans, 2014, 119(2):881-897.
    Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea[J]. Journal of Geophysical Research Oceans, 2011, 116, C05016.
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016, 6, doi: 10.1038/srep2434.
    Chaigneau A, Texier M L, Eldin G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean:A composite analysis from altimetry and Argo profiling floats[J]. Journal of Geophysical Research Atmospheres, 2011, 116(C11):C11025.
    Yang Guang, Wang Fan, Li Yuanlong, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean:Statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research:Oceans, 2013, 118(4):1906-1925.
    Liu Cong, Li Peiliang. The Impact of Meso-Scale Eddies on the Subtropical Mode Water in the Western North Pacific[J]. Journal of Ocean University of China, 2013, 12(2):230-236.
    倪钦彪. 吕宋海峡附近中尺度涡的统计特征和复合三维结构[D]. 厦门:厦门大学, 2014. Ni Qinbiao. Statistical Characteristics and Composite Three-dimensional Structures of Mesoscale Eddies near the Luzon Strait[D]. Xiamen:Xiamen University, 2014.
    Zhang Zhengguang, Zhang Yu, Wang Wei, et al. Universal structure of mesoscale eddies in the ocean[J]. Geophysical Research Letters, 2013, 40(14):3677-3681.
    Zhang Zhengguang, Wang Wei, Qiu Bo. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194):322-324.
    Sadarjoen I A, Post F H. Detection, quantification, and tracking of vortices using streamline geometry[J]. Computers & Graphics, 2000, 24(3):333-341.
    Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records:Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2):106-119.
    Chen Gengxin, Hou Yijun, Chu Xiaoqing, et al. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4):943-954.
    Chen Gengxin, Wang Dongxiao, Hou Yijun. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal[J]. Continental Shelf Research, 2012, 47(10):178-185.
    Barth A, Beckers J M, Troupin C, et al. Divand-1.0:n-dimensional variational data analysis for ocean observations[J]. Geoscientific Model Development Discussions, 2013, 7(1):225-241.
    杨光. 西北太平洋中尺度涡旋研究[D]. 青岛:中国科学院海洋研究所, 2013. Yang Guang. A Study on the Mesoscale Eddies in the Northwestern Pacific Ocean[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2013.
    Liu Qinyu, Jia Yinglai, Liu Penghui, et al. Seasonal and intraseasonal thermocline variability in the central south China Sea[J]. Geophysical Research Letters, 2001, 28(23):4467-4470.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1041) PDF downloads(746) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return