Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhang Yongmei, Pan Zhenkuan, Cao Conghua, Duan Jinming, Lu Jingge. Information extraction of enteromorpha green tide area based on variational level set method[J]. Haiyang Xuebao, 2017, 39(9): 121-132. doi: 10.3969/j.issn.0253-4193.2017.09.012
Citation: Zhang Yongmei, Pan Zhenkuan, Cao Conghua, Duan Jinming, Lu Jingge. Information extraction of enteromorpha green tide area based on variational level set method[J]. Haiyang Xuebao, 2017, 39(9): 121-132. doi: 10.3969/j.issn.0253-4193.2017.09.012

Information extraction of enteromorpha green tide area based on variational level set method

doi: 10.3969/j.issn.0253-4193.2017.09.012
  • Received Date: 2016-09-25
  • Rev Recd Date: 2016-10-30
  • Green tide area information extraction is an important link of the remote sensing monitoring, its result will directly affect the subsequent statistical analysis and the early warning prediction. Now researchers generally extract the green tide area information based on the traditional threshold method, and this approach has many disadvantages such as low efficiency, unstable result and human factors. Against to above-mentioned problem, the dual method and split Bregman projection method based on variational level set method was studied used to the green tide area information extraction in this paper. A new quantization method was proposed, which was used to deal with the green tide information result extracted by the two mentioned methods. Based on the traditional threshold method and the dual method and split Bregman projection method, the experiments of three images were respectively carried out, and extraction results were compared and analyzed. To higher resolution satellite remote sensing data, the experiment results show that not only the extraction efficiency but the accuracy and stability based on variational level set method are all superior to the traditional threshold method.
  • loading
  • 梁刚. 大型藻类遥感监测方法研究[D]. 大连:大连海事大学, 2011. Liang Gang. The method of monitoring macroalgae by remote sensing[D]. Dalian:Dalian Maritime University, 2011.
    钟山, 丁一, 李振. MODIS浒苔遥感监测误差分析研究[J]. 遥感信息, 2013, 28(1):38-42. Zhong Shan, Ding Yi, Li Zhen. Error analysis on enteromorpha prolifera monitoring using MODIS data[J]. Remote Sensing Information, 2013, 28(1):38-42.
    孙立娥. 绿潮遥感探测影响因素分析[D]. 青岛:青岛大学, 2012. Sun Lie. Analysis on influences of the green tide remote sensing detecting[D]. Qingdao:Qingdao University, 2012.
    顾行发, 陈兴峰, 尹球, 等. 黄海浒苔灾害遥感立体监测[J]. 光谱学与光谱分析, 2011, 31(6):1627-1632. Gu Xingfa, Chen Xingfeng, Yin Qiu, et al. Stereoscopic remote sensing used in enteromorpha prolifra disaster in Chinese Yellow Sea[J]. Spectroscopy and Spectral Analysis, 2011, 31(6):1627-1632.
    Chan T, Sandberg B, Moelich M. Some recent developments in variational image segmentation[M]//Image Processing Based on Partial Differential Equations, New York:Springer-Verlag, 2007, Part Ⅲ:175-210.
    Kass M,Witriw A,Terzopoulos D. Snakes:Active contour models[J]. International Journal of Computer Vision,1988,1:321-331.
    Osher S, Sethian J A. Fronts propagating with curvature-dependent speed:algorithms based on hamilton-jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1):12-49.
    Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001,10(2):266-277.
    潘振宽, 李华, 魏伟波, 等. 三维图像多相分割的变分水平集方法[J]. 计算机学报, 2009, 32(12):2464-2474. Pan Zhenkuan, Li Hua, Wei Weibo, et al. A variational level set method of multiphase segmentation for 3D images[J]. Chinese Journal of Computer, 2009, 32(12):2464-2474.
    王相海, 李明. 矢量C-V模型的高光谱遥感影像分割[J]. 遥感学报, 2015, 19(3):443-450. Wang Xianghai, Li Ming. Segmentation of hyperspectral remote sensing image using vector C-V model[J]. Journal of Remote Sensing, 2015, 19(3):443-450.
    程相康,朱宏擎. 一种基于高斯混合模型的快速水平集图像分割方法[J]. 华东理工大学学报(自然科学版),2015, 41(6):808-814. Cheng Xiangkang, Zhu Hongqing. A fast level set method for image segmentation based on Gaussian Mixture Models[J].Journal of East China University of Science and Technology:Natural Science Edition, 2015,41(6):808-814.
    苏晓慧, 张晓东, 苏伟, 等. HJ-1卫星延寿期的CCD影像质量评价与可用性分析[J]. 农业工程学报, 2012, 28(12):164-170. Su Xiaohui, Zhang Xiaodong, Su Wei, et al. Quality evaluation and usability annlysis of CCD image in life extension period for HJ-1 satellite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12):164-170.
    赵英时,陈冬梅,李小明. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003. Zhao Yingshi, Chen Dongmei, Li Xiaoming. Analysis Principle and Method of Remote Sensing Applications[M]. Beijing:Science Press, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (897) PDF downloads(444) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return