Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Liu Hui, Yao Peng, Meng Jia, Wang Jinpeng, Zhao Bin. Speciation and transformation of phosphorus in surface sediments of the Changjiang Estuary and adjacent shelf based on water elutriation[J]. Haiyang Xuebao, 2017, 39(8): 115-128. doi: 10.3969/j.issn.0253-4193.2017.08.011
Citation: Liu Hui, Yao Peng, Meng Jia, Wang Jinpeng, Zhao Bin. Speciation and transformation of phosphorus in surface sediments of the Changjiang Estuary and adjacent shelf based on water elutriation[J]. Haiyang Xuebao, 2017, 39(8): 115-128. doi: 10.3969/j.issn.0253-4193.2017.08.011

Speciation and transformation of phosphorus in surface sediments of the Changjiang Estuary and adjacent shelf based on water elutriation

doi: 10.3969/j.issn.0253-4193.2017.08.011
  • Received Date: 2016-10-25
  • Rev Recd Date: 2017-02-20
  • Phosphorus is an important biogenic element playing a key role in primary production in estuarine and coastal environments. Knowledge of the speciation and transformation of phosphorus in sediments contributes to a better understanding of the ecosystem dynamics in these regions. Surface sediment samples were collected in the Changjiang Estuary and adjacent shelf in March, 2013, and were separated into different size fractions via water elutriation. P speciation was analyzed by a modified sequential extraction method (SEDEX) to obtain six sedimentary P forms:exchangeable or loosely-sorbed P(Ex-P), organic P(Or-P), Fe-bound P(Fe-P), authigenic P(Au-P),detrital P(De-P) and refractory P(Re-P) in order to investigate the distribution and transformation of different phosphorus forms in the sediments of this area. The total phosphorus (TP) in sediments ranged from 14.0-18.4 μmol/g, and De-P was the major form and accounted for 54.5% of the TP, followed by Or-P and Re-P, which accounted for 15.1% and 13.1%, respectively. The contents of phosphorus forms in different size fractions were different. Ex-P, Or-P, Fe-P, Au-P and Re-P decreased gradually with increasing grain size, while De-P was concentrated in coarser particles (more than 32 μm). Based on the mass distribution of phosphorus speciation, less than 32 μm fractions gradually increased from Changjiang Estuary to Zhe-Min Coast and decreased seaward, while the variation tendency of more than 32 μm fractions was opposite, reflecting the selective transport of phosphorus of different forms. With the increase of particle size, TOC to Or-P (TOC/Or-P) ratios first decreased and then increased. High TOC/Or-P values in the larger size fractions were possibly caused by the high terrestrial OC contributions in this fraction, while in fine particles, high TOC/Or-P values are largely attributed to the more efficient transformation and remobilization of Or-P, indicating preferential regeneration of Or-P relative to OC. This study shows that a more comprehensive understanding of the phosphorus cycle in these dynamic estuarine and coastal environments can be obtained from a size fractionation perspective.
  • loading
  • Bianchi T S, Allison M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20):8085-8092.
    van der Zee C, Slomp C P, van Raaphorst W. Authigenic P formation and reactive P burial in sediments of the Nazaré canyon on the Iberian margin (NE Atlantic)[J]. Marine Geology, 2002, 185(3/4):379-392.
    Meng Jia, Yao Peng, Yu Zhigang, et al. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang estuary and adjacent East China Sea inner shelf[J]. Estuarine, Coastal and Shelf Science, 2014, 144:27-38.
    Yu Yu, Song Jinming, Li Xuegang, et al. Environmental significance of biogenic elements in surface sediments of the Changjiang Estuary and its adjacent areas[J]. Journal of Environmental Sciences, 2013, 25(11):2185-2195.
    胡敦欣, 杨作升. 东海海洋通量关键过程[M]. 北京:海洋出版社, 2001. Hu Dunxin, Yang Zuosheng. Key Processes of the Ocean Flux in the East China Sea[M]. Beijing:China Ocean Press, 2001.
    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3/4):208-224.
    沈焕庭, 贺松林, 潘定安, 等. 长江河口最大浑浊带研究[J]. 地理学报, 1992, 47(5):472-479. Shen Huanting, He Songlin, Pan Ding'an, et al. A study of turbidity maximum in the Changjiang Estuary[J]. Acta Geographica Sinica, 1992, 47(5):472-479.
    Rao Jilong, Berner R A. Time variations of phosphorus and sources of sediments beneath the Chang Jiang (Yangtze River)[J]. Marine Geology, 1997, 139(1/4):95-108.
    Andrieux-Loyer F, Aminot A. Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas[J]. Estuarine, Coastal and Shelf Science, 2001, 52(5):617-629.
    He Huijun, Chen Hongtao, Yao Qingzhen, et al. Behavior of different phosphorus species in suspended particulate matter in the Changjiang estuary[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4):859-868.
    Meng Jia, Yao Qingzhen, Yu Zhigang. Particulate phosphorus speciation and phosphate adsorption characteristics associated with sediment grain size[J]. Ecological Engineering, 2014, 70:140-145.
    Sutula M, Bianchi T S, McKee B A. Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico[J]. Limnology and Oceanography, 2004, 49(6):2223-2235.
    Boesch D F, Boynton W R, Crowder L B, et al. Nutrient enrichment drives gulf of Mexico hypoxia[J]. Eos, Transactions American Geophysical Union, 2009, 90(14):117-118.
    Wang Jinping, Yao Peng, Bianchi T S, et al. The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Chemical Geology, 2015, 402:52-67.
    Shen Zhiliang, Zhou Shuqing, Pei Shaofeng. Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science, 2008, 78(3):481-492.
    Zhang J, Liu S M, Ren J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf[J]. Progress in Oceanography, 2007, 74(4):449-478.
    杨逸萍, 胡明辉. 河口悬浮物中磷的化学形态分布与转化[J]. 台湾海峡, 1995, 14(4):313-319. Yang Yiping, Hu Minghui. Distribution and transformation of phosphorus forms in estuarine suspended matter[J]. Journal of Oceanography in Taiwan Strait, 1995, 14(4):313-319.
    Gao Xiaojiang, Xu Shiyuan, Zhang Nianli. Distribution and forms of phosphorus in tidal flat sediments of the Yangtze Estuary and coast[J]. Science in China Series B:Chemistry, 2001, 44(S1):190-196.
    郑丽波, 叶瑛, 周怀阳, 等. 东海特定海区表层沉积物中磷的形态、分布及其环境意义[J]. 海洋与湖沼, 2003, 34(3):274-282. Zheng Libo, Ye Ying, Zhou Huaiyang, et al. Distribution of different forms of phosphorus in seabed sediments from East China Sea and its environmental significance[J]. Oceanologia et Limnologia Sinica, 2003, 34(3):274-282.
    Fang T H, Chen J L, Huh C A. Sedimentary phosphorus species and sedimentation flux in the East China Sea[J]. Continental Shelf Research, 2007, 27(10/11):1465-1476.
    Meng Jia, Yao Peng, Bianchi T S, et al. Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin[J]. Science of the Total Environment, 2015, 517:22-30.
    何会军, 于志刚, 姚庆祯, 等. 长江口及毗邻海区沉积物中磷的分布特征[J]. 海洋学报, 2009, 31(5):19-30. He Huijun, Yu Zhigang, Yao Qingzhen, et al. Distribution of phosphorus in sediments from the Changjiang Estuary and its adjacent sea[J]. Haiyang Xuebao, 2009, 31(5):19-30.
    Yao Peng, Zhao Bin, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf:implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91:1-11.
    Walling D E, Woodward J C. Use of a field-based water elutriation system for monitoring the in situ particle size characteristics of fluvial suspended sediment[J]. Water Research, 1993, 27(9):1413-1421.
    张龙军, 刘立芳, 张向上. 应用多元线性回归法测定黄河口不同粒径悬浮物中的有机碳含量[J]. 分析化学, 2008, 36(5):567-571. Zhang Longjun, Liu Lifang, Zhang Xiangshang. Application of multiple linear regression in studying particulate organic carbon content in size-fractioned total suspended solids in Huanghe Estuary[J]. Chinese Journal of Analytical Chemistry, 2008, 36(5):567-571.
    Zhang Longjun, Zhang Jiao, Gong Minna. Size distributions of hydrocarbons in suspended particles from the Yellow River[J]. Applied Geochemistry, 2009, 24(7):1168-1174.
    潘慧慧, 姚鹏, 赵彬, 等. 基于水淘选分级的长江口最大浑浊带附近颗粒有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(4):1-15. Pan Huihui, Yao Peng, Zhao Bing, et al. Sources, distribution and preservation of size-fractionated particulate organic carbon in the turbidity maximum zone of the Changjiang Estuary based on water elutriation[J]. Haiyang Xuebao, 2015, 37(4):1-15.
    潘慧慧, 姚鹏, 王金鹏, 等. 长江口水淘选分级颗粒物中有机碳的来源、分布与降解[J]. 中国海洋大学学报, 2016, 46(2):90-99. Pan Huihui, Yao Peng, Wang Jinpeng, et al. Sources, distribution, and decay of size-fractionated particulate organic carbon in the Changjiang Estuary based on water elutriation[J]. Periodical of Ocean University of China, 2016, 46(2):90-99.
    何会军, 于志刚, 陈洪涛, 等. 水淘选颗粒物分级方法的研究与应用[J]. 中国海洋大学学报, 2010, 40(2):68-72. He Huijun, Yu Zhigang, Chen Hongtao, et al. The water elutriator method for particle size seperation and its application[J]. Periodical of Ocean University of China, 2010, 40(2):68-72.
    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean:a Global Synthesis[M]. Cambridge:Cambridge University Press, 2013.
    郭志刚, 杨作升, 曲艳慧, 等. 东海陆架泥质区沉积地球化学比较研究[J]. 沉积学报, 2000, 18(2):284-289. Guo Zhigang, Yang Zuosheng, Qu Yanhui, et al. Study on comparison sedimentary geochemistry of mud area on East China Sea continental shelf[J]. Acta Sedimentologica Sinica, 2000, 18(2):284-289.
    Hoshika A, Tanimoto T, Mishima Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2003, 50(2):443-455.
    Vink S, Chambers R M, Smith S V. Distribution of phosphorus in sediments from Tomales Bay, California[J]. Marine Geology, 1997, 139(1/4):157-179.
    Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 1992, 37(7):1460-1482.
    Hou L J, Liu M, Yang Y, et al. Phosphorus speciation and availability in intertidal sediments of the Yangtze Estuary, China[J]. Applied Geochemistry, 2009, 24(1):120-128.
    Keil R G, Mayer L M, Quay P D, et al. Loss of organic matter from riverine particles in deltas[J]. Geochimica et Cosmochimica Acta, 1997, 61(7):1507-1511.
    Meng Jia, Yu Zhigang, Yao Qingzhen, et al. Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary[J]. Marine Chemistry, 2015, 168:124-134.
    Berner R A, Rao Jilong. Phosphorus in sediments of the Amazon river and estuary:implications for the global flux of phosphorus to the sea[J]. Geochimica et Cosmochimica Acta, 1994, 58(10):2333-2339.
    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18):2141-2156.
    Zhu Chun, Wang Zhanghua, Xue Bin, et al. Characterizing the depositional settings for sedimentary organic matter distributions in the Lower Yangtze River-East China Sea shelf system[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3):182-191.
    Li Dong, Yao Peng, Bianchi T S, et al. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf:implication for the influence of Three Gorges Dam[J]. Journal of Marine Systems, 2014, 139:409-419.
    Shen Huati, Liang Juting, Wang Xiuchang. Reworking of relict sediments on the continental shelf of the East China Sea[J]. Marine Geology & Quaternary Geology, 1984, 4(2):67-76.
    Sekula-Wood E, Benitez-Nelson C R, Bennett M A, et al. Magnitude and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin, California[J]. Global Biogeochemical Cycles, 2012, 26(2):GB2023.
    Redfield A C. The influence of organisms on the composition of seawater[M]//Hill M N. The Sea. New York:Wiley-Interscience, 1963:26-77.
    Ingall E D, Van Cappellen P. Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments[J]. Geochimica et Cosmochimica Acta, 1990, 54(2):373-386.
    Ruttenberg K C, Goñi M A. Phosphorus distribution, C:N:P ratios, and δ13Coc in arctic, temperate, and tropical coastal sediments:tools for characterizing bulk sedimentary organic matter[J]. Marine Geology, 1997, 139(1/4):123-145.
    Schenau S J, De Lange G J. Phosphorus regeneration vs. burial in sediments of the Arabian Sea[J]. Marine Chemistry, 2001, 75(3):201-217.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (924) PDF downloads(537) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return