Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Xie Weiming, He Qing, Wang Xianye, Guo Leicheng, Guo Chao. Hydrodynamic process and sediment transport in a tidal creek system over the Easten Chongming Island, Yangtze Estuary[J]. Haiyang Xuebao, 2017, 39(7): 80-91. doi: 10.3969/j.issn.0253-4193.2017.07.008
Citation: Xie Weiming, He Qing, Wang Xianye, Guo Leicheng, Guo Chao. Hydrodynamic process and sediment transport in a tidal creek system over the Easten Chongming Island, Yangtze Estuary[J]. Haiyang Xuebao, 2017, 39(7): 80-91. doi: 10.3969/j.issn.0253-4193.2017.07.008

Hydrodynamic process and sediment transport in a tidal creek system over the Easten Chongming Island, Yangtze Estuary

doi: 10.3969/j.issn.0253-4193.2017.07.008
  • Received Date: 2016-09-27
  • Rev Recd Date: 2017-01-11
  • To speculate about the hydrodynamic process and sediment transport within the intertidal zone, we conducted a two-day survey in the Eastern Chongming Island in April, 2014 during a spring tide. Four tripods were deployed in three main morphological domains:one in the salt marshes, one in the mudflats and two in the tidal creeks. Our results show that:(1) the median particle size of surficial sediment in the creeks is 21.7 μm and is finer than that in the salt marshes and mudflats which is 33.0 μm. The particle size of suspended sediment decreases landward; (2) the dominant currents are rectilinear currents in the tidal creeks while are often rotational flows in the flats. The average vertical velocity in the lateral, creek, salt marsh, and mudflat is 15.4 cm/s, 34.6 cm/s, 11.3 cm/s, and 28.9 cm/s, respectively; (3) the highest suspended sediment concentration appears in the early flood periods in the tidal creeks while occurs during slack water or in the middle of the ebb periods in the flats. The suspended sediment in the tidal creeks mostly derives from adjacent sea rather than resuspension which is the main suspended sediment source in the flats; (4) over a tidal cycle, net landward sediment transport is observed in the creeks and the average sediment flux per tidal cycle could be 4.0 t/m. There is also a net import of sediment with 1.0 t/m per tidal cycle driven through the salt marsh. On the contrary, the net sediment flux in the mudflat is seaward along the creek and the dominant sediment transport in the mudflat is perpendicular to the creek rather than along the creek which the lateral, creek and salt marsh are. Our results also indicate that the salt marshes experience deposition while the mudflats are eroded in our study site.
  • loading
  • Goodwin P, Mehta A J, Zedler J B. Tidal wetland restoration:An introduction[J]. Journal of Coastal Research, 2001, 27:1-6.
    Friedrichs C T, Perry J E. Tidal salt marsh morphodynamics:A synthesis[J]. Journal of Coastal Research, 2001,27(1):7-37.
    Le Hir P, Monbet Y, Orvain F. Sediment erodability in sediment transport modelling:Can we account for biota effects?[J]. Continental Shelf Research, 2007, 27(8):1116-1142.
    Wang Yaping, Gao Shu, Jia Jianjun. High-resolution data collection for analysis of sediment dynamic processes associated with combined current-wave action over intertidal flats[J]. Chinese Science Bulletin, 2006, 51(7):866-877.
    Fagherazzi S, Kirwan M L, Mudd S M, et al. Numerical models of salt marsh evolution:Ecological, geomorphic, and climatic factors[J]. Reviews of Geophysics, 2012,50(1):G1002.
    沈健, 沈焕庭, 潘定安, 等. 长江河口最大浑浊带水沙输运机制分析[J]. 地理学报, 1995, 50(5):411-420. Shen Jian, Shen Huanting, Pan Dingan, et al. Analysis of transport mechanism of water and suspended sediment in the turbidity maximum of the Changjiang Estuary[J]. Acta Geographica Sinica, 1995, 50(5):411-420.
    D Alpaos A, Marani M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes[J]. Advances in Water Resources, 2016, 93:265-275.
    蒋丰佩. 异质潮滩水沙输运研究[D]. 上海:华东师范大学, 2012. Jiang Fengpei. Study on the Hydrodynamics and Sediment Transport Characteristics on Tidal Flat with Particular Sediment in Yangtze Estuary[D]. Shanghai:East China Normal University, 2012.
    贺宝根. 长江口潮滩水动力过程、泥沙输移与冲淤变化[D]. 上海:华东师范大学, 2004. He Baogen. Hydrodynamic process, sediment transport, and morphological change on the tidal flats in the Yangtze Estuary[D]. Shanghai:East China Normal University, 2004.
    辛沛, 金光球, 李凌, 等. 崇明东滩盐沼潮沟水动力过程观测与分析[J]. 水科学进展, 2009(1):74-79. Xin Pei, Jin Guangqiu, Li Ling, et al. Observation and analysis of hydrodynamics in a tidal creek at the Chongming Dongtan salt marsh[J]. Advances in Water Science, 2009(1):74-79.
    李鹏, 杨世伦, 秦渭华. 基于潮沟定点观测的潮间带水、沙、盐交换研究——以长江口九段沙一潮沟为例[J]. 海洋与湖沼, 2014(1):126-133. Li Peng, Yang Shilun, Qin Weihua. Interchange of water-sediment-salinity over an intertidal flat in Jiuduan Shoal in the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2014(1):126-133.
    吉晓强, 何青, 刘红, 等. 崇明东滩水文泥沙过程分析[J]. 泥沙研究, 2010(1):46-57. Ji Xiaoqiang, He Qing, Liu Hong, et al. Preliminary study on hydrodynamics and sediment processes in Chongmin Dongtan[J]. Journal of Sediment Research, 2010(1):46-57.
    Shi B W, Yang S L, Wang Y P, et al. Relating accretion and erosion at an exposed tidal wetland to the bottom shear stress of combined current-wave action[J]. Geomorphology, 2012,138(1):380-389.
    杨世伦. 长江三角洲潮滩季节性冲淤循环的多因子分析[J]. 地理学报, 1997(2):29-36. Yang Shilun. Multi-factor analysis of the annually cyclic erosion-deposition of the Changjiang River Deltaic[J]. Acta Geographica Sinica, 1997(2):29-36.
    茅志昌, 虞志英, 徐海根. 上海潮滩研究[M]. 上海:华东师大出版社, 2014:233. Mao Zhichang, Yu Zhiying, Xu Haigen. Study of Tidal Flats in Shanghai[M]. Shanghai:East China Normal University Press, 2014:233.
    谢卫明, 何青, 章可奇, 等. 三维激光扫描系统在潮滩地貌研究中的应用[J]. 泥沙研究, 2015(1):1-6. Xie Weiming, He Qing, Zhang Keqi, et al. Application of the terrestrial laser scanner to measuring geomorphology in tidal flats and salt marshes[J]. Journal of Sediment Research, 2015(1):1-6.
    李占海, 陈沈良, 张国安. 长江口崇明东滩水域悬沙粒径组成和再悬浮作用特征[J]. 海洋学报, 2008, 30(6):154-163. Li Zhanhai, Chen Shenliang, Zhang Guoan. The study on grain-size distribution of suspended sediment and resuspension process on the Chongming east intertidal and subtidal zones in the Changjiang Estuary in China[J]. Haiyang Xuebao, 2008, 30(6):154-163.
    刘红. 长江河口泥沙混合和交换过程研究[D]. 上海:华东师范大学, 2009. Liu Hong. Sediment mixing and exchange processes in the Yangtze Estuary[D]. Shanghai:East China Normal University, 2009.
    Mariotti G, Fagherazzi S, Wiberg P L, et al. Influence of storm surges and sea level on shallow tidal basin erosive processes[J]. Journal of Geophysical Research, 2010, 115(C11):148-227.
    韩震, 恽才兴, 戴志军, 等. 淤泥质潮滩高程及冲淤变化遥感定量反演方法研究——以长江口崇明东滩为例[J]. 海洋湖沼通报, 2009(1):12-18. Han Zhen, Yun Caixing, Dai Zhijun, et al. Remote sensing quantitative inversion research of the silt tidal flat elevation and deposition and erosion-Chongming Dongtan as the example[J]. Transactions of Oceanology and Limnology, 2009(1):12-18.
    邵虚生. 潮沟成因类型及其影响因素的探讨[J]. 地理学报, 1988(1):35-43. Shao Xusheng. Genetic classification of tidal creek and factors affecting its development[J]. Acta Geographica Sinica, 1988(1):35-43.
    张忍顺, 王雪瑜. 江苏省淤泥质海岸潮沟系统[J]. 地理学报, 1991(2):195-206. Zhang Renshun, Wang Xueyu. Tidal creek system on tidal mud flat of Jiangsu Province[J]. Acta Geographica Sinica, 1991(2):195-206.
    Temmerman S, Bouma T J, Govers G, et al. Flow paths of water and sediment in a tidal marsh:Relations with marsh developmental stage and tidal inundation height[J]. Estuaries, 2005,28(3):338-352.
    Li H, Yang S L. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta[J]. Journal of Coastal Research, 2009, 25(4):915-924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (986) PDF downloads(649) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return