Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhang Jingjing, Li Hongjun, Qin Yanjie, Liu Min, Ye Sheng. Identification and differential expression of gill microRNA in the Chinese surf clam (Mactra chinensis) with Cd2+ exposure[J]. Haiyang Xuebao, 2016, 38(12): 118-131. doi: 10.3969/j.issn.0253-4193.2016.12.012
Citation: Zhang Jingjing, Li Hongjun, Qin Yanjie, Liu Min, Ye Sheng. Identification and differential expression of gill microRNA in the Chinese surf clam (Mactra chinensis) with Cd2+ exposure[J]. Haiyang Xuebao, 2016, 38(12): 118-131. doi: 10.3969/j.issn.0253-4193.2016.12.012

Identification and differential expression of gill microRNA in the Chinese surf clam (Mactra chinensis) with Cd2+ exposure

doi: 10.3969/j.issn.0253-4193.2016.12.012
  • Received Date: 2016-06-30
  • The Chinese surf clam (Mactra chinensis) is an economically important clam, distributed in Liaoning Province and Shandong Province. In recently years, because of coastal environmental deterioration and overfishing, the natural population of M. chinensis have considerably declined. In this paper, we studied the microRNA transcriptome of gills, and control and experimental group were sequenced through Illumina Hiseq 2500 CE. The differential expression andlysis was used to find the functional microRNA response to the Cd2+ exposure. Through Illumina Hi-seq 2500 CE, a total of 14 415 256 clean reads and 15 570 111 clean reads were yielded in the gill of control and experimental group respectively. A total of 14 584 077 small RNA, including 187 859 unique small RNA were yielded. The distribution of the small RNA length in the two library was similar, most of them were 26-27 nt. 27 nt was the most abundant length in control group, followded by 28 nt, 26 nt, and 23 nt; 26 nt was the most abundant length in experimental group, and followed by 27 nt, 28 nt and 23 nt. 50 microRNA was found in unique small RNA, including 38 conserved and 12 novel genes. The most abundant length of microRNA in the two library was the same, 23 nt. Through the analyze of differential expression analysis, the expression of 5 microRNA was induced with significantly difference, other 45 microRNA was regulated up or down without significantly difference. 542 target genes were yielded when the 50 microRNA were hit to mRNA genome. And the target genes of differential expression microRNA were annotated by hitting to the NCBI database, and 4 genes hit to the COG, 1 genes hit to the GO, 5 genes hit to the KEGG and 11 genes hit to the nr database. The genes hit to the NCBI database included E3 ubiquitin-protein ligase, Wnt signaling pathway and Regulator of G-protein signaling 22.
  • loading
  • 齐钟彦. 中国经济软体动物[M]. 北京:中国农业出版社, 1998. Qi Zhongyan. Economic Mollusca of China[M]. Beijing:China Agriculture Press, 1998.
    王海涛, 王浩, 苏海岩, 等. 中国蛤蜊生态养殖技术[J]. 科学养鱼, 2013(1):45-46. Wang Haitao, Wang Hao, Su Haiyan, et al. Ecological breeding technology of Mactra chinensis[J]. Scientific Fish Farming, 2013(1):45-46.
    Ranald P, Black B. Privatising water in the driest state:The impacts on employees and industrial relations of the corporatisation and outsourcing of metropolitan water and sewerage services in south Australia[J]. Labour & Industry:a Journal of the Social and Economic Relations of Work, 2000, 11(2):17-38.
    Wang Shuailong, Xu Xiangrong, Sun Yuxin, et al. Heavy metal pollution in coastal areas of South China:a review[J]. Marine Pollution Bulletin, 2013, 76(1/2):7-15.
    Wu Zhihao, He Mengchang, Lin Chunye. Environmental impacts of heavy metals (Co, Cu, Pb, Zn) in surficial sediments of estuary in Daliao River and YingKou Bay (Northeast China):concentration level and chemical fraction[J]. Environmental Earth Sciences, 2012, 66(8):2417-2430.
    Roesijadi G. Metallothioneins in metal regulation and toxicity in aquatic animals[J]. Aquatic Toxicology, 1992, 22(2):81-113.
    Engel D W, Brouwer M. Trace metal-binding proteins in marine molluscs and crustaceans[J]. Marine Environmental Research, 1984, 13(3):177-194.
    刘明星, 李国基, 顾宏堪. 渤海鱼类、甲壳动物、软体动物的痕量金属含量[J]. 环境科学学报, 1983, 3(2):149-155. Liu Mingxing, Li Guoji, Gu Hongkan. Trace metal concentration in fish, crestacea and mollusea of the Bohai Bay[J]. Acta Scientiae Circumstantiae, 1983, 3(2):149-155.
    蔡立哲, 刘琼玉, 洪华生. 菲律宾蛤仔在高浓度锌铅水体中的金属积累[J]. 台湾海峡, 1998, 17(4):456-461. Cai Lizhe, Liu Qiongyu, Hong Huasheng. Metal-accumulation of Ruditapes philippinarum in high zinc and lead experimental waters[J]. Journal of Oceanography in Taiwan Strait, 1998, 17(4):456-461.
    Amiard-Triquet C, Berthet B, Metayer C, et al. Contribution to the ecotoxicological study of cadmium, copper and zinc in the mussel Mytilus edulis[J]. Marine Biology, 1986, 92(1):7-13.
    王晓丽, 孙耀, 张少娜, 等. 牡蛎对重金属生物富集动力学特性研究[J]. 生态学报, 2004, 24(5):1086-1090. Wang Xiaoli, Sun Yao, Zhang Shaona, et al. Experiment researches on the kinetic characteristics of bioconcentration of heavy metals in O. gigas Thunberg[J]. Acta Ecologica Sinica, 2004, 24(5):1086-1090.
    陆超华, 谢文造, 周国君. 近江牡蛎作为海洋重金属镉污染指示生物的研究[J]. 中国水产科学, 1998, 5(2):79-83. Lu Chaohua, Xie Wenzao, Zhou Guojun. Studies on Crassostrea rivularis as a biological indicator of cadmium pollution[J]. Journal of Fishery Sciences of China, 1998, 5(2):79-83.
    陆慧贤, 徐永健. 缢蛏(Sinonovacula constricta)对海水中镉富集规律的研究[J]. 生态科学, 2013, 32(4):434-438. Lu Huixian, Xu Yongjian. Study on cadmium bioaccumulation in Sinonovacula constricta[J]. Ecological Science, 2013, 32(4):434-438.
    张传永, 孙振兴. Cd2+对中国蛤蜊的急性毒性及SOD活性的影响[J]. 安徽农业科学, 2010, 38(1):193-195. Zhang Chuanyong, Sun Zhenxing. Effect of Cd2+ on SOD activity and the acute toxicity of clam Mactra chinensis[J]. Journal of Anhui Agricul Agricultural Science, 2010, 38(1):193-195.
    李洁, 秦性良, 邵宁生. MicroRNA及其靶基因的时空特异性与动态变化[J]. 生物化学与生物物理进展, 2013, 40(7):617-626. Li Jie, Qin Xingliang, Shao Ningsheng. Time and space specificity and dynamic change of microRNA and its targets[J]. Progress in Biochemistry and Biophysics, 2013, 40(7):617-626.
    金吉春. MicroRNA的概述及其研究[J]. 医学研究生学报, 2013, 26(10):1109-1112. Jin Jichun. Overview and research of microRNA[J]. Journal of Medical Postgraduates, 2013, 26(10):1109-1112.
    Tay Y, Zhang J Q, Thomson A M, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation[J]. Nature, 2008, 455(7216):1124-1128.
    Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
    Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772):901-906.
    尹福强. 烟草苗期干旱胁迫诱导根系mRNA和miRNA快速响应机理研究[D]. 雅安:四川农业大学, 2013. Yin Fuqiang. Characterize of roles of mRNAs and miRNAs in responding to drought stress in tobacco seedling roots[D]. Ya'an:Sichuan Agriculture University, 2013.
    Owens L, Malham S. Review of the RNA interference pathway in molluscs including some possibilities for use in bivalves in aquaculture[J]. Journal of Marine Science and Engineering, 2015, 3(1):87-99.
    Zhou Zhi, Wang Lingling, Song Linsheng, et al. The identification and characteristics of immune-related microRNAs in haemocytes of oyster Crassostrea gigas[J]. PLoS One, 2014, 9(2):e88397.
    Bao Yongbo, Zhang Lili, Dong Yinghui, et al. Identification and comparative analysis of the Tegillarca granosa haemocytes microRNA transcriptome in response to Cd using a deep sequencing approach[J]. PLoS One, 2014, 9(4):e93619.
    Jiao Yu, Zheng Zhe, Du Xiaodong, et al. Identification and characterization of microRNAs in pearl oyster Pinctada martensii by solexa deep sequencing[J]. Marine Biotechnology, 2014, 16(1):54-62.
    Rehmsmeier M, Steffen P, Höchsmann M, et al. Fast and effective prediction of microRNA/target duplexes[J]. RNA, 2004, 10(10):1507-1517.
    Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila[J]. Genome Biology, 2004, 5(1):R1.
    Anders S, Huber W. Differential expression analysis for sequence count data[J]. Genome Biology, 2010, 11(10):R106.
    Izar B, Mannala G K, Mraheil M A, et al. MicroRNA response to listeria monocytogenes infection in epithelial cells[J]. International Journal of Molecular Sciences, 2012, 13(1):1173-1185.
    O'Connell R M, Rao D S, Baltimore D. MicroRNA regulation of inflammatory responses[J]. Annual Review Immunology, 2012, 30:295-312.
    Li Chenghua, Feng Weida, Qiu Lihua, et al. Characterization of skin ulceration syndrome associated microRNAs in sea cucumber Apostichopus japonicus by deep sequencing[J]. Fish & Shellfish Immunology, 2012, 33(2):436-441.
    Cristino A S, Tanaka E D, Rubio M, et al. Deep sequencing of organ-and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae)[J]. PLoS One, 2011, 6(4):e19350.
    Wei Yuanyuan, Chen Shuang, Yang Pengcheng, et al. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust[J]. Genome Biology, 2009, 10(1):R6.
    Skalsky R L, Vanlandingham D L, Scholle F, et al. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus[J]. BMC Genomics, 2010, 11:119.
    Song Changnian, Wang Chen, Zhang Changqing, et al. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata)[J]. BMC Genomics, 2010, 11:431.
    Martínez G, Forment J, Llave C, et al. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs[J]. PLoS One, 2011, 6(5):e19523.
    Wang Chen, Wang Xicheng, Kibet N K, et al. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in MiRBase[J]. Physiologia Plantarum, 2011, 143(1):64-81.
    Christodoulou F, Raible F, Tomer R, et al. Ancient animal microRNAs and the evolution of tissue identity[J]. Nature, 2010, 463(7284):1084-1088.
    Starega-Roslan J, Koscianska E, Kozlowski P, et al. The role of the precursor structure in the biogenesis of microRNA[J]. Cellular and Molecular Life Sciences, 2011, 68(17):2859-2871.
    Leung A K L, Sharp P A. MicroRNA functions in stress responses[J]. Molecular Cell, 2010, 40(2):205-215.
    Schmidt W M, Spiel A O, Jilma B, et al. In vivo profile of the human leukocyte microRNA response to endotoxemia[J]. Biochemical and Biophysical Research Communications, 2009, 380(3):437-441.
    Chen Youhai. MicroRNA immunobiology:When microRNA chemists meet immunologists[J]. Cell & Molecular Immunology, 2011, 8(5):369-370.
    韩萍萍, 郑若男. Wnt信号通路及其与疾病的关系[J]. 生物技术通报, 2009(11):13-15. Han Pingping, Zheng Ruonan. Wnt signal pathway and its role in disease[J]. Biotechnology Bulletin, 2009(11):13-15.
    Pickart C M. Back to the future with ubiquitin[J]. Cell, 2004, 116(2):181-190.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (703) PDF downloads(662) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return