Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Xu Tengfei, Zhou Hui. Oceanic channel dynamics of the IOD-ENSO teleconnection in oceanic reanalysis datasets[J]. Haiyang Xuebao, 2016, 38(12): 23-35. doi: 10.3969/j.issn.0253-4193.2016.12.003
Citation: Xu Tengfei, Zhou Hui. Oceanic channel dynamics of the IOD-ENSO teleconnection in oceanic reanalysis datasets[J]. Haiyang Xuebao, 2016, 38(12): 23-35. doi: 10.3969/j.issn.0253-4193.2016.12.003

Oceanic channel dynamics of the IOD-ENSO teleconnection in oceanic reanalysis datasets

doi: 10.3969/j.issn.0253-4193.2016.12.003
  • Received Date: 2016-03-20
  • IOD-ENSO lag teleconnection in oceanic reanalysis datasets (SODA, ORAS4, and NCEP GODAS) are analyzed and compared with those in observations based on lag correlation analysis. The results show significant lag correlations between the sea surface temperature anomalies (SSTA)/sea surface height anomalies (SSHA) in the southeastern tropical Indian Ocean (STIO) in fall and those in the equatorial Pacific cold tongue in the following fall in the three datasets, which are in agreement with observations. In the subsurface, lag correlations between the STIO SSTA in fall and the temperature anomalies in the equatorial Pacific vertical section show that the significant positive correlations moved eastward in the following winter through fall and outcropped at the cold tongue in the following summer and fall in both observation and assimilation datasets. The significant lag correlations between the STIO and the Pacific cold tongue are attribute to the oceanic channel dynamics, i.e., the IOD induced Indonesian Throughflow transport anomalies results in thermocline anomalies in the equatorial Pacific, driving equatorial Kelvin waves to propagate eastward, thereby contributing to the SSTA in the central-eastern Pacific cold tongue. These significant lag correlations are robust even if the ENSO signal is removed in the SODA and ORAS4 datasets, which are in agreement with those in the observations, suggesting that the oceanic channel dynamics are independent of ENSO. In comparison, the significant lag correlations have disappeared if the ENSO signal is regressed out in the GODAS dataset. Lag correlations between the Indonesian Throughflow (ITF) volume transport anomalies and the Niño 3.4/DMI indices with lag time from -12 to 12 months suggest significant influences of both ENSO and IOD events on the ITF transport in the SODA and ORAS4 datasets, consistent with the analyses of observations. The ITF transport anomalies, however, shows significant correlation only with Niño 3.4 indices in the GODAS dataset, suggesting that the ITF transport is poorly dominated by the IOD anomalies in the GODAS. This explains why the lag correlation of IOD-ENSO teleconnection disappears at one year time lag if ENSO signal was removed in the GODAS dataset.
  • loading
  • Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6751):360-363.
    肖莺, 张祖强, 何金海. 印度洋偶极子研究进展综述[J]. 热带气象学报, 2009, 25(5):621-627. Xiao Ying, Zhang Zuqiang, He Jinhai. Progresses in the studies on Indian Ocean dipoles[J]. Journal of Tropical Meteorology, 2009, 25(5):621-627.
    Bjerknes J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature[J]. Tellus, 1966, 18(4):820-829.
    Alexander M A, Bladé I, Newman M, et al. The atmospheric bridge:the influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16):2205-2231.
    Lau N C, Nath M J. Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes[J]. Journal of Climate, 2003, 16(1):3-20.
    Luo Jingjia, Zhang Ruochao, Behera S K, et al. Interaction between El Niño and extreme Indian ocean dipole[J]. Journal of Climate, 2010, 23(3):726-742, doi: 10.1175/2009JCLI3104.1.
    李崇银, 穆明权, 潘静. 印度洋海温偶极子和太平洋海温异常[J]. 科学通报, 2001, 46(20):1747-1751. Li Chongyin, Mu Mingquan, Pan Jing. Indian Ocean temperature dipole and SSTA in the equatorial Pacific Ocean[J]. Chinese Science Bulletin, 2001, 46(20):1747-1751.
    Izumo T, Vialard J, Lengaigne M, et al. Influence of the state of the Indian Ocean dipole on the following year's El Niño[J]. Nature Geoscience, 2010, 3(3):168-172.
    肖莺, 张祖强, 何金海, 等. 印度洋偶极子与热带太平洋海洋表面温度异常多时间尺度相互作用初析[J]. 大气科学, 2010, 34(3):483-494. Xiao Ying, Zhang Zuqiang, He Jinhai, et al. Multi-scale interactions between the Indian Ocean dipole and the tropical Pacific sea surface temperature anomalies[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(3):483-494.
    Wyrtki K. NAGA report volume 2:Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959-1961[R]. Technical Report. California:The University of California Scripps Institution of Oceanography, 1961:195.
    杜岩, 方国洪. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 2011, 26(11):1131-1142. Du Yan, Fang Guohong. Progress on the study of the Indonesian Seas and the Indonesian Throughflow[J]. Advances in Earth Science, 2011, 26(11):1131-1142.
    Wijffels S E, Meyers G, Godfrey J S. A 20-year average of the Indonesian throughflow:regional currents and the interbasin exchange[J]. Journal of Physical Oceanography, 2008, 38(9):1965-1978.
    Hirst A C, Godfrey J S. The role of Indonesian throughflow in a global ocean GCM[J]. Journal of Physical Oceanography, 1993, 23(6):1057-1086.
    Lee T, Fukumori I, Menemenlis D, et al. Effects of the Indonesian throughflow on the Pacific and Indian ocean[J]. Journal of Physical Oceanography, 2002, 32(5):1404-1429.
    Song Qian, Vecchi G A, Rosati A J. The role of the Indonesian throughflow in the Indo-Pacific climate variability in the GFDL coupled climate model[J]. Journal of Climate, 2007, 20(11):2434-2451.
    俞永强, 周祖翼, 张学洪. 印度尼西亚海道关闭对气候的影响:一个数值模拟研究[J]. 科学通报, 2003, 48(S2):60-64. Yu Yongqiang, Zhou Zuyi, Zhang Xuehong. Impact of the closure of Indonesian seaway on climate:a numerical modeling study[J]. Chinese Science Bulletin, 2003, 48(S2):88-93.
    吴海燕, 李崇银, 张铭. 印尼贯穿流对热带太平洋-印度洋海温异常综合模影响的初步模拟研究[J]. 热带海洋学报, 2010, 26(5):513-520. Wu Haiyan, Li Chongyin, Zhang Ming. The preliminary numerical research of effects of ITF on tropical Pacific-Indian Ocean associated temperature anomaly mode[J]. Journal of Tropical Meteorology, 2010, 26(5):513-520.
    Yuan Dongliang, Wang Jing, Xu Tengfei, et al. Forcing of the Indian ocean dipole on the interannual variations of the tropical Pacific Ocean:roles of the Indonesian throughflow[J]. Journal of Climate, 2011, 24(14):3593-3608.
    Yuan Dongliang, Zhou Hui, Zhao Xia. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian Throughflow[J]. Journal of Climate, 2013, 26(9):2845-2861.
    Xu Tengfei, Yuan Dongliang, Yu Yongqiang, et al. An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model[J]. Advances in Atmospheric Sciences, 2013, 30(4):997-1016.
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research, 2003, 108(D14):4407, doi: 10.1029/2002JD002670.
    White W B. Design of a global observing system for gyre-scale upper ocean temperature variability[J]. Progress in Oceanography, 1995, 36(3):169-217.
    Carton J A, Giese B S. A reanalysis of Ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8):2999-3017.
    Balmaseda M A, Mogensen K, Weaver A T. Evaluation of the ECMWF ocean reanalysis system ORAS4[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674):1132-1161.
    Derber J C, Rosati A. A global oceanic data assimilation system[J]. Journal of Physical Oceanography, 1989, 19(9):1333-1347.
    徐腾飞. 印尼贯穿流在热带印太气候季节到年际变化中的作用[D]. 青岛:中国科学院海洋研究所, 2014. Xu Tengfei. Roles of the Indonesian Throughflow in the seasonal to interannual variability of the tropical Indo-Pacific climate[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2014.
    Liu Qinyan, Feng Ming, Wang Dongxiao, et al. Interannual variability of the Indonesian Throughflow transport:a revisit based on 30 year expendable bathythermograph data[J]. Journal of Geophysical Research, 2015, 120(12):8270-8282.
    Susanto R D, Song Y T. Indonesian throughflow proxy from satellite altimeters and gravimeters[J]. Journal of Geophysical Research, 2015, 120(4):2844-2855.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1314) PDF downloads(746) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return