Citation: | Yi Weidong, Yu Xinsheng, Cui Shanggong. Analysis method of waterline change from nearshore video images based on ant colony optimization[J]. Haiyang Xuebao, 2016, 38(7): 72-84. doi: 10.3969/j.issn.0253-4193.2016.07.007 |
Because of the characteristics of low cost and high spatio-temporal resolution, nearshore video remote sensing technology has become an alternative means for coastal dynamic monitoring in recent years. For nearshore video monitoring, the waterline position can be used as a proxy indicator for mapping the shoreline changes of beach. Under the influence of complex beach terrain and irregular variation of waves and tides, accurate detection of waterline changes from video images has become one of the challenge problems in nearshore video remote sensing. A combined CIELab color model with ant colony optimization algorithm to detect the edge of waterline has been proposed and it has been evaluated under high water level changeduring typhoon storm surge in Shilaoren Beach, Qingdao city. The results of both comparison with traditional methods for edge detection and field images evaluation have showed that the proposed method has better reliability, accuracy and the ability to preserve the detail edges and anti-noise capability, which is particularly suitable for quantifying waterline efficiently. The feasibility of the proposed method for extracting waterline automatically from field video images in extreme weather conditions is demonstrated and it is showed this method is capable to incorporate into an automotive coastal video system for long term shoreline dynamic change monitoring.
Addo K A, Walkden M, Mills J P. Detection, measurement and prediction of shoreline recession in Accra, Ghana[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(5): 543-558.
|
Rihouey D, Dugor J, Dailloux D, et al. Application of remote sensing video systems to coastal defence monitoring[J]. Journal of Coastal Research, 2009,58(2): 1582-1586.
|
Valaouris A, Poulos S, Petrakis S, et al. Processes affecting recent and future morphological evolution of the Xylokastro beach zone(Gulf of Corinth, Greece)[J]. Global NEST Journal, 2014, 16(4):773-786.
|
Emery K O. A simple method of measuring beach profiles[J]. Limnology and Oceanography, 1961, 6(1): 90-93.
|
Turner I L, Goodwin I, Davidson M A, et al. Planning for an Australian National Coastal Observatory: monitoring and forecasting coastal erosion in a changing climate[C]// Proceeding of Coastal and Ports. Perth, 2011:737-743.
|
Harley M D, Turner I L, Short A D, et al. Assessment and integration of conventional, RTK-GPS and image-derived beach survey methods for daily to decadal coastal monitoring[J]. Coastal Engineering, 2011, 58(2): 194-205.
|
Balouin Y, Rey-Valette H, Picand P A. Automatic assessment and analysis of beach attendance using video images at the Lido of Sète beach, France[J]. Ocean & Coastal Management, 2014, 102(41): 114-122.
|
Almar R, Ranasinghe R, Sénéchal N, et al. Video-based detection of shorelines at complex meso-macro tidal beaches[J]. Journal of Coastal Research, 2012, 28(5): 1040-1048.
|
Aarninkhof S G J, Turner I L, Dronkers T D T, et al. A video-based technique for mapping intertidal beach bathymetry[J]. Coastal Engineering, 2003, 49(4): 275-289.
|
Holman R A, Stanley J. The history and technical capabilities of Argus[J]. Coastal Engineering, 2007, 54(6): 477-491.
|
Plant N G, Aarninkhof S G J, Turner I L, et al. The performance of shoreline detection models applied to video imagery[J]. Journal of Coastal Research, 2009,23(3): 658-670.
|
Uunk L, Wijnberg K M, Morelissen R. Automated mapping of the intertidal beach bathymetry from video images[J]. Coastal Engineering, 2010, 57(4): 461-469.
|
Smith R K, Bryan K R. Monitoring beach face volume with a combination of intermittent profiling and video imagery[J]. Journal of Coastal Research, 2007,23(4): 892-898.
|
Holland K T, Holman R A, Lippman T C, et al. Practical use of video imagery in nearshore oceanographic field studies[J]. IEEE Journal of Ocean Engineering, 1997, 22(1): 81-92.
|
Abdel-Aziz Y I, Karara H M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[C]//Proceeding of the ASP Symposium on Close Range Photogrammetry, Fall Church VA: American Society of Photogrammetry, 1971: 1-18.
|
龚涛. 近景摄影测量控制点布设方案的研究[J]. 西南交通大学学报, 1997, 32(3): 330-335. Gong Tao. A scheme for distribution of control points in close-range photogrammetry[J]. Journal of Southwest Jiaotong University, 1997, 32(3): 330-335.
|
Boak E H, Turner I L. Shoreline definition and detection: A review[J]. Journal of Coastal Research, 2005, 21(4):688-703.
|
Paris P, Mitasova H. Barrier island dynamics using mass center analysis: A new way to detect and track large-scale change[J]. ISPRS International Journal of Geo-Information, 2014, 3(1): 49-65.
|
严海兵, 李秉柏, 陈敏东. 遥感技术提取海岸线的研究进展[J]. 地域研究与开发, 2009, 28(1): 101-105. Yan Haibing, Li Bingbai, Chen Mindong. Progress of researches in coastline extraction based on RS technique[J]. Areal Research and Development, 2009, 28(1): 101-105.
|
Rajinikanth V, Couceiro M S. RGB histogram based color image segmentation using firefly algorithm[J]. Procedia Computer Science, 2015, 46(5): 1449-1457.
|
林伟明, 胡云堂. 基于YUV颜色模型的番茄收获机器人图像分割方法[J]. 农业机械学报, 2012, 43(12): 176-180. Lin Weiming, Hu Yuntang. Image segmentation method based on YUV color space for tomato harvesting robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 176-180.
|
Ganesan P, Rajini V, Rajkumar R I. Segmentation and edge detection of color images using CIELAB color space and edge detectors[C]// Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010 International Conference on. IEEE, 2010: 393-397.
|
龙建武. 图像阈值分割关键技术研究[D]. 长春:吉林大学, 2014. Long Jianwu. Research on Key Techniques of Image Thresholding[D]. Changchun:Jilin University, 2014.
|
Otsu N. A threshold selection method from gray-level histograms[J]. Automatica, 1975, 11(285/296): 23-27.
|
Aslam A, Khan E, Beg M M S. Improved edge detection algorithm for brain tumor segmentation[J]. Procedia Computer Science, 2015, 58(8): 430-437.
|
Shrivakshan G T, Chandrasekar C. A comparison of various edge detection techniques used in image processing[J]. International Journal of Computer Science Issues, 2012, 9(5): 272-276.
|
宋寅卯, 刘磊. 图像分割研究方法及进展[J]. 电脑学习, 2010(2): 1-3. Song Yinmao, Liu Lei. The methods and progress of image segment[J]. Computer Studies, 2010(2): 1-3.
|
薛卫鹏. 基于Otsu算法与数学形态学的图像分割算法研究[D]. 沈阳:东北大学, 2009. Xue Weipeng. An analysis of image segmentation based on otsu method and mathematic morphology[D]. Shenyang:Northeastern University, 2009.
|
朱培逸, 刘红晴. 基于数学形态学图像分割算法在水果分级中的应用[J]. 科学技术与工程, 2013 (34): 10375-10380. Zhu Peiyi, Liu Hongqing. Facial expression recognition using multi-feature fusion in color space[J]. Science Technology and Engineering, 2013(34): 10375-10380.
|
鄢文晋. 蚁群算法及其在数据挖掘中的应用[D]. 重庆: 重庆大学, 2007:52-59. Yan Wenjin. Ant Colony Algorithm and Its Applications in Data Mining[D]. Chongqing: Chongqing University, 2007:52-59.
|
Nezamabadi-pour H, Saryazdi S, Rashedi E. Edge detection using ant algorithms[J]. Soft Computing, 2006, 10(7): 623-628.
|
韩彦芳, 施鹏飞. 基于蚁群算法的图像分割方法[J]. 计算机工程与应用, 2004, 40(18): 5-7. Han Yanfang, Shi Pengfei. Image segmentation based on improved ant colony algorithm[J]. Computer Engineering and Applications, 2004, 40(18): 5-7.
|
Bansal S, Aggarwal D. Color image segmentation using CIElab color space using ant colony optimization[J]. International Journal of Computer Applications, 2011, 29(9): 28-34.
|
庞晓敏, 闵子建, 阚江明. 基于HSI和LAB颜色空间的彩色图像分割[J]. 广西大学学报: 自然科学版, 2011, 36(6): 976-980. Pang Xiaomin, Min Zijian, Kan Jiangming. Color image segmentation based on HSI and LAB color space[J]. Journal of Guangxi University: Natural Science Edition, 2011, 36(6): 976-980.
|