Citation: | Sun Jun, Li Xiaoqian, Chen Jianfang, Guo Shujin. Progress in oceanic biological pump[J]. Haiyang Xuebao, 2016, 38(4): 1-21. doi: 10.3969/j.issn.0253-4193.2016.04.001 |
Falkowski P, Scholes R, Boyle E, et al. The global carbon cycle:a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490):291-296.
|
Sarmiento J L, Gruber N. Ocean Biogeochemical Dynamics[M]. Cambridge Univ Press, 2006, 503.
|
Hansell D A, Carlson C A. Deep-ocean gradients in the concentration of dissolved organic carbon[J]. Nature, 1998, 395(6699):263-266.
|
Eglinton T, Repeta D. Organic matter in the contemporary ocean[M]//Treatise on Geochemistry. Holland H D, Turekian K K. The Oceans and Marine Geochemistry, Elsevier Pergamon, Amsterdam, 2004, 6, 145-180.
|
孙军. 海洋浮游植物与生物碳汇[J]. 生态学报, 2011, 31(18):5372-5378. Sun Jun. Marine phytoplankton and biological carbon sink[J]. Acta Ecologica Sinica, 2011, 31(18):5372-5378.
|
Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4):287-333.
|
Reynolds C S, Jaworski G H M, Cmiech H A, et al. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. emend. Elenkin[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 1981, 293(1068):419-477.
|
Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[M]. Cambridge:Pitt Press, 1851.
|
Reynolds C S. The ecology of phytoplankton[M]. Cambridge:Cambridge University Press, 2006.
|
Peperzak L, Colijn F, Koeman R, et al. Phytoplankton sinking rates in the Rhine region of freshwater influence[J]. Journal of Plankton Research, 2003, 25(4):365-383.
|
Gross F, Zeuthen E. The buoyancy of plankton diatoms:a problem of cell physiology[J]. Proceedings of the Royal Society of London B:Biological Sciences, 1948, 135(880):382-389.
|
Anderson L W J, Sweeney B M. Role of inorganic ions in controlling sedimentation rate of a marine centric diatom ditylum brightwell[J]. Journal of Phycology, 1978, 14(2):204-214.
|
Kahn N, Swift E. Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schuett[J]. Limnology and Oceanography, 1978, 23(4):649-658.
|
Malins D C, Sargent J R. Biochemical and biophysical perspectives in marine biology[M]. New York:Academic Press, 1974.
|
Smayda T J. The suspension and sinking of phytoplankton in the sea[J]. Oceanography and Marine Biology, 1970, 8:353-414.
|
Fogg G E, Thake B. Algal cultures and phytoplankton ecology[M]. Wisconsin:University of Wisconsin Press, 1987.
|
Belcher J H. Notes on the physiology of Botryococcus braunii Kützing[J]. Archives of Microbiology, 1968, 61(4):335-346.
|
Reynolds C S. The ecology of freshwater phytoplankton[M]. Cambridge:Cambridge University Press, 1984.
|
Dinsdale M T, Walsby A E. The interrelations of cell turgor pressure, gas-vacuolation, and buoyancy in a blue-green alga[J]. Journal of Experimental Botany, 1972, 23(2):561-570.
|
Thomas R H, Walsby A E. Buoyancy regulation in a strain of Microcystis[J]. Microbiology, 1985, 131(4):799-809.
|
Utkilen H C, Oliver R L, Walsby A E. Buoyancy regulation in a red Oscillatoria unable to collapse gas vacuoles by turgor pressure[J]. Archiv für Hydrobiologie, 1985, 102(3):319-329.
|
Walsby A E, Kinsman R, Ibelings B W, et al. Highly buoyant colonies of the cyanobacterium Anabaena-Lemmermannii form persistent surface waterblooms[J]. Archiv für Hydrobiologie, 1991, 121(3):261-280.
|
Walsby A E. Gas vesicles[J]. Microbiological Reviews, 1994, 58(1):94-144.
|
Reynolds C S. Cyanobacterial water-blooms[J]. Advances in Botanical Research, 1987, 13:67-143.
|
Kromkamp J C, Mur L R. Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content[J]. FEMS Microbiology Letters, 1984, 25(1):105-109.
|
Walsby A E. The properties and buoyancy-providing role of gas vacuoles in Trichodesmium Ehrenberg[J]. British Phycological Journal, 1978, 13(2):103-116.
|
Pitcher G C, Walker D R, Mitchel-Innes B A. Phytoplankton sinking rate dynamics in the southern Benguela upwelling system[J]. Marine Ecology Progress Series, 1989, 55(2/3):261-269.
|
Talling J F. Underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton[C]//Proceedings of the International Association of Theoretical and Applied Limnology Symposium, Factors Regul Wax Wane Algal Pop. 1971.
|
Pollingher U. Freshwater armored dinoflagellates:growth, reproduction strategies, and population dynamics[M]//Sandgren C. Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge:Cambridge University Press, 1988:134-174.
|
Smayda T J. Turbulence, watermass stratification and harmful algal blooms:an alternative view and frontal zones as "pelagic seed banks"[J]. Harmful Algae, 2002, 1(1):95-112.
|
Sommer U. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe[J]. Hydrobiologia, 1986, 138(1):1-7.
|
Bienfang P, Laws E, Johnson W. Phytoplankton sinking rate determination:technical and theoretical aspects, an improved methodology[J]. Journal of Experimental Marine Biology and Ecology, 1977, 30(3):283-300.
|
Riley G A, Stommel H M, Bumpus D F. Quantitative ecology of the plankton of the western North Atlantic[M]. Bingham:Bingham Oceanographic Laboratory, 1949.
|
Smayda T J, Boleyn B J. Experimental observations on the flotation of marine diatoms. Ⅰ. Thalassiosira nana, Thalassiosira rotula and Nitzschia seriata[J]. Limnology and Oceanography, 1965, 10(4):499-509.
|
Smayda T J, Boleyn B J. Experimental observations on the flotation of marine diatoms. Ⅱ. Skeletonema costatum and Rhizosolenia setigera[J]. Limnology and Oceanography, 1966, 11(1):18-34.
|
Smayda T J, Boleyn B J. Experimental observations on the flotation of marine diatoms. Ⅲ. Bacteriastrum hyalinum and Chaetoceros lauderi[J]. Limnology and Oceanography, 1966, 11(1):35-43.
|
Steele J H, Yentsch C S. The vertical distribution of chlorophyll[J]. Journal of the Marine Biological Association of the United Kingdom, 1960, 39(2):217-226.
|
Eppley R W, Holmes R W, Strickland J D H. Sinking rates of marine phytoplankton measured with a fluorometer[J]. Journal of Experimental Marine Biology and Ecology, 1967, 1(2):191-208.
|
Titman D. A fluorometric technique for measuring sinking rates of freshwater phytoplankton[J]. Limnology and Oceanography, 1975, 20(5):869-875.
|
Bienfang P K. SETCOL-a technologically simple and reliable method for measuring phytoplankton sinking rates[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(10):1289-1294.
|
Lännergren C. Buoyancy of natural populations of marine phytoplankton[J]. Marine Biology, 1979, 54(1):1-10.
|
Waite A M, Nodder S D. The effect of in situ iron addition on the sinking rates and export flux of Southern Ocean diatoms[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 48(11/12):2635-2654.
|
Mei Zhiping, Legendre L, Gratton Y, et al. Phytoplankton production in the North Water Polynya:size-fractions and carbon fluxes, April to July 1998[J]. Marine Ecology Progress Series, 2003, 256:13-27.
|
O'brien K R, Waite A M, Alexander B L, et al. Particle tracking in a salinity gradient:A method for measuring sinking rate of individual phytoplankton in the laboratory[J]. Limnology and Oceanography:Methods, 2006, 4(9):329-335.
|
Walsby A E, Holland D P. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning[J]. Journal of the Royal Society Interface, 2006, 3(8):429-439.
|
Bach L T, Riebesell U, Sett S, et al. An approach for particle sinking velocity measurements in the 3-400 μm size range and considerations on the effect of temperature on sinking rates[J]. Marine Biology, 2012, 159(8):1853-1864.
|
Passow U. Species-specific sedimentation and sinking velocities of diatoms[J]. Marine Biology, 1991, 108(3):449-455.
|
Muggli D L, Lecourt M, Harrison P J. Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific[J]. Marine Ecology Progress Series, 1996, 132(1):215-227.
|
Anderson L, Sweeney B. Diel changes in sedimentation characteristics of Ditylum brightwelli:Changes in cellular lipid and effects of respiratory inhibitors and ion-transport modifiers[J]. Limnol Oceanogr, 1977, 22(3):539-552.
|
Bienfang P K, Harrison P J, Quarmby L M. Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms[J]. Marine Biology, 1982, 67(3):295-302.
|
Culver M E, Smith W O. Effects of environmental variation on sinking rates of marine phytoplankton[J]. Journal of Phycology, 1989, 25(2):262-270.
|
Bienfang P K. Size structure and sinking rates of various microparticulate constituents in oligotrophic Hawaiian waters[J]. Marine Ecology Progress Series, 1985, 23(2):143-151.
|
Johnson T O, Smith W O. Sinking rates of phytoplankton assemblages in the weddell sea marginal ice-zone[J]. Marine Ecology Progress Series, 1986, 33(2):131-137.
|
Riebesell U. Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom[J]. Marine Ecology Progress Series, 1989, 54(1/2):109-119.
|
Waite A, Bienfang P K, Harrison P J. Spring bloom sedimentation in a subarctic ecosystem. Ⅰ. Nutrient sensitivity[J]. Marine Biology, 1992, 114(1):119-129.
|
Titman D, Kilham P. Sinking in freshwater phytoplankton:some ecological implications of cell nutrient status and physical mixing processes[J]. Limnology and Oceanography, 1976, 21(3):409-417.
|
Mcnown J S, Malaika J. Effects of particle shape on settling velocity at low Reynolds numbers[J]. Eos, Transactions American Geophysical Union, 1950, 31(1):74-82.
|
Hutchinson G E. A Treatise on Limnology. Ⅱ. Introduction to lake biology and their limnoplankton[M]. New York:Wiley, 1967.
|
Komar P D. Settling velocities of circular cylinders at low Reynolds numbers[J]. The Journal of Geology, 1980, 88(3):327-336.
|
Davey M C, Walsby A E. The form resistance of sinking algal chains[J]. British Phycological Journal, 1985, 20(3):243-248.
|
Padisák J, Soróczki-Pintér É, Rezner Z. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton-an experimental study[J]. Hydrobiologia, 2003, 500(1/3):243-257.
|
Holland D P. Sinking rates of phytoplankton filaments orientated at different angles:theory and physical model[J]. Journal of Plankton Research, 2010, 32(9):1327-1336.
|
Morris I. The physiological ecology of phytoplankton[M]. Oxford:Blackwell, 1980.
|
Lande R, Wood A M. Suspension times of particles in the upper ocean[J]. Deep-Sea Research Part A Oceanographic Research Papers, 1987, 34(1):61-72.
|
Ruiz J, García C M, Rodríguez J. Sedimentation loss of phytoplankton cells from the mixed layer:effects of turbulence levels[J]. Journal of Plankton Research, 1996, 18(9):1727-1734.
|
Ruiz J, Macías D, Peters F. Turbulence increases the average settling velocity of phytoplankton cells[J]. Proceedings of the National academy of Sciences of the United States of America, 2004, 101(51):17720-17724.
|
Huisman J, Sommeijer B. Maximal sustainable sinking velocity of phytoplankton[J]. Marine Ecology Progress Series, 2002, 244:39-48.
|
Maxey M R. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields[J]. Journal of Fluid Mechanics, 1987, 174:441-465.
|
Turner J T, Ferrante J G. Zooplankton fecal pellets in aquatic ecosystems[J]. BioScience, 1979, 29(11):670-677.
|
张武昌, 张芳, 王克. 海洋浮游动物粪便通量[J]. 地球科学进展, 2001, 16(1):113-119. Zhang Wuchang, Zhang Fang, Wang Ke. Marine zooplankton fecal pellets flux[J]. Advances in Earth Science, 2001, 16(1):113-119.
|
Lane P V Z, Smith S L, Urban J L, et al. Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 1994, 41(2/3):437-457.
|
Møller E F, Borg C M A, Jónasdóttir S H, et al. Production and fate of copepod fecal pellets across the Southern Indian Ocean[J]. Marine Biology, 2011, 158(3):677-688.
|
Riser C W, Wassmann P, Olli K, et al. Production, retention and export of zooplankton faecal pellets on and off the Iberian shelf, north-west Spain[J]. Progress in Oceanography, 2001, 51(2/4):423-441.
|
Riser C W, Wassmann P, Olli K, et al. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea[J]. Journal of Marine Systems, 2002, 38(1/2):175-188.
|
Wassmann P, Hansen L, Andreassen I J, et al. Distribution and sedimentation of faecal on the Nordvestbanken shelf, northern Norway, in 1994[J]. Sarsia, 1999, 84(3/4):239-253.
|
Raymont J E G, Gross F. XX.On the feeding and breeding of Calanus finmarchicus under laboratory conditions[J]. Proceedings of the Royal Society of Edinburgh Section B Biology, 1942, 61(3):267-287.
|
Marshall S M, Orr A P. On the biology of Calanus finmarchicus VIII. Food uptake, assimilation and excretion in adult and stage V Calanus[J]. Journal of the Marine Biological Association of the United Kingdom, 1955, 34(3):495-529.
|
Paffenhöfer G A, Knowles S C. Ecological implications of fecal pellet size, production and consumption by copepods[J]. J Mar Res, 1979, 37(1):35-49.
|
Butler M, Dam H G. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions:implications for vertical fluxes[J]. Marine Ecology Progress Series, 1994, 114(1/2):81-91.
|
Corner E D S, Head R N, Kilvington C C. On the nutrition and metabolism of zooplankton. VIII. The grazing of Biddulphia cells by Calanus helgolandicus[J]. Journal of the Marine Biological Association of the United Kingdom, 1972, 52(4):847-861.
|
Ayukai T, Nishizawa S. Defecation rate as a possible measure of ingestion rate of Calanus pacificus pacificus(Copepoda:Calanoida)[J]. Bulletin of the Plankton Society of Japan, 1986, 33(1):3-10.
|
Gamble J C. Copepod grazing during a declining spring phytoplankton bloom in the northern North Sea[J]. Marine Biology, 1978, 49(4):303-315.
|
Poulsen L K, Kiørboe T. Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods[J]. Marine Ecology Progress Series, 2006, 323:195-204.
|
Frangoulis C, Belkhiria S, Goffart A, et al. Dynamics of copepod faecal pellets in relation to a Phaeocystis dominated phytoplankton bloom:characteristics, production and flux[J]. Journal of Plankton Research, 2001, 23(1):75-88.
|
Juul-Pedersen T, Nielsen T G, Michel C, et al. Sedimentation following the spring bloom in Disko Bay, West Greenland, with special emphasis on the role of copepods[J]. Marine Ecology Progress Series, 2006, 314:239-255.
|
Riser C W, Reigstad M, Wassmann P, et al. Export or retention? Copepod abundance, faecal pellet production and vertical flux in the marginal ice zone through snap shots from the northern Barents Sea[J]. Polar Biology, 2007, 30(6):719-730.
|
Beaumont K L, Plummer A J, Hosie G W, et al. Production and fate of faecal pellets during summer in an East Antarctic fjord[J]. Hydrobiologia, 2001, 453-454(1):55-65.
|
Urban-Rich J L. Latitudinal variations in the contribution by copepod fecal pellets to organic carbon and amino acid flux[M]. College Park, Md.:University of Maryland, 1997.
|
Blaxter J H, Douglas B, Tyler P A, et al. The biology of calanoid copepods:the biology of calanoid copepods[M]. New York:Academic Press, 1998.
|
Smayda T J. Normal and accelerated sinking of phytoplankton in the sea[J]. Marine Geology, 1971, 11(2):105-122.
|
Turner J T. Sinking rates of fecal pellets from the marine copepod Pontella meadii[J]. Marine Biology, 1977, 40(3):249-259.
|
Yoon W, Kim S, Han K. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic[J]. Marine Biology, 2001, 139(5):923-928.
|
Fowler S W, Small L F. Sinking rates of euphausiid fecal pellets[J]. Limnology and Oceanography, 1972, 17(2):293-296.
|
Bruland K W, Silver M W. Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids)[J]. Marine Biology, 1981, 63(3):295-300.
|
Deibel D. Still-water sinking velocity of fecal material from the pelagic tunicate Dolioletta gegenbauri[J]. Marine Ecology Progress Series, 1990, 62:55-60.
|
Gorsky G, Fisher N S, Fowler S W. Biogenic debris from the pelagic tunicate, Oikopleura dioica, and its role in the vertical transport of a transuranium element[J]. Estuarine, Coastal and Shelf Science, 1984, 18(1):13-23.
|
Dilling L, Alldredge A L. Can chaetognath fecal pellets contribute significantly to carbon flux?[J]. Marine Ecology Progress Series, 1993, 92:51-58.
|
Madin L P. Production, composition and sedimentation of salp fecal pellets in oceanic waters[J]. Marine Biology, 1982, 67(1):39-45.
|
Small L F, Fowler S W, Vnlü M Y. Sinking rates of natural copepod fecal pellets[J]. Marine Biology, 1979, 51(3):233-241.
|
Bienfang P K. Herbivore diet affects fecal pellet settling[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(9):1352-1357.
|
Dagg M J, Walser Jr W E. The effect of food concentration on fecal pellet size in marine copepods[J]. Limnology and Oceanography, 1986, 31(5):1066-1071.
|
Tsuda A, Nemoto T. The effect of food concentration on the faecal pellet size of the marine copepod Pseudocalanus newmani Frost[J]. Bulletin of the Plankton Society of Japan Hiroshima, 1990, 37(1):83-90.
|
Bishop J K B, Edmond J M, Ketten D R, et al. The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean[J]. Deep-Sea Research, 1977, 24(6):511-548.
|
Urrère M A, Knauer G A. Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment[J]. Journal of Plankton Research, 1981, 3(3):369-387.
|
Fowler S W, Small L F, Larosa J L. Seasonal particulate carbon flux in the coastal northwestern mediterranean-sea, and the role of zooplankton fecal matter[J]. Oceanologica Acta, 1991, 14(1):77-85.
|
Graf G. Benthic-pelagic coupling in a deep-sea benthic community[J]. Nature, 1989, 341(6241):437-439.
|
Pilskaln C H, Honjo S. The fecal pellet fraction of biogeochemical particle fluxes to the deep sea[J]. Global Biogeochemical Cycles, 1987, 1(1):31-48.
|
Maita Y, Odate T, Yanada M. Vertical transport of organic carbon by sinking particles and the role of zoo-and phytogenic matters in neritic waters[J]. Bulletin of the Faculty of Fisheries Hokkaido University, 1988, 39(4):265-274.
|
Asper V L. Measuring the flux and sinking speed of marine snow aggregates[J]. Deep-Sea Research Part A Oceanographic Research Papers, 1987, 34(1):1-17.
|
Taylor G T. Variability in the vertical flux of microorganisms and biogenic material in the epipelagic zone of a North Pacific central gyre station[J]. Deep Sea Research Part A Oceanographic Research Papers, 1989, 36(9):1287-1308.
|
Roman M R, Gauzens A L. Copepod grazing in the equatorial Pacific[J]. Limnology and Oceanography, 1997, 42(4):623-634.
|
Roy S, Silverberg N, Romero N, et al. Importance of mesozooplankton feeding for the downward flux of biogenic carbon in the Gulf of St. Lawrence (Canada)[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2000, 47(3/4):519-544.
|
Small L F, Fowler S W, Moore S A, et al. Dissolved and fecal pellet carbon and nitrogen release by zooplankton in tropical waters[J]. Deep Sea Research Part A Oceanographic Research Papers, 1983, 30(12):1199-1220.
|
Wassmann P, Ypma J E, Tselepides A. Vertical flux of faecal pellets and microplankton on the shelf of the oligotrophic Cretan Sea (NE Mediterranean Sea)[J]. Progress in Oceanography, 2000, 46(2/4):241-258.
|
Lapoussière A, Michel C, Gosselin M, et al. Spatial variability in organic material sinking export in the Hudson Bay system, Canada, during fall[J]. Continental Shelf Research, 2009, 29(9):1276-1288.
|
Juul-Pedersen T, Michel C, Gosselin M. Sinking export of particulate organic material from the euphotic zone in the eastern Beaufort Sea[J]. Marine Ecology Progress Series, 2010, 410:55-70.
|
Gleiber M R. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula[D]. Williamsburg:The College of William and Mary, 2010.
|
Ayukai T, Hattori H. Production and downward flux of zooplankton fecal pellets in the anticyclonic gyre off Shikoku, Japan[J]. Oceanologica Acta, 1992, 15(2):163-172.
|
Passow U, Shipe R F, Murray A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4):327-346.
|
Olli K, Wassmann P, Reigstad M, et al. The fate of production in the central Arctic Ocean-top-down regulation by zooplankton expatriates?[J]. Progress in Oceanography, 2007, 72(1):84-113.
|
Goldthwait S A, Steinberg D K. Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2008, 55(10/13):1360-1377.
|
Tamelander T, Aubert A, Wexels Riser C. Export stoichiometry and contribution of copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorus[J]. Marine Ecology Progress Series, 2012, 459:17-28.
|
Carroll M L, Miquel J C, Fowler S W. Seasonal patterns and depth-specific trends of zooplankton fecal pellet fluxes in the Northwestern Mediterranean Sea[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1998, 45(8):1303-1318.
|
Miquel J C, Fowler S W, La Rosa J, et al. Dynamics of the downward flux of particles and carbon in the open northwestern Mediterranean Sea[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1994, 41(2):243-261.
|
Gowing M M, Garrison D L, Kunze H B, et al. Biological components of Ross Sea short-term particle fluxes in the austral summer of 1995-1996[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2001, 48(12):2645-2671.
|
Manno C, Tirelli V, Accornero A, et al. Importance of the contribution of Limacina helicina faecal pellets to the carbon pump in Terra Nova Bay (Antarctica)[J]. Journal of Plankton Research, 2010, 32(2):145-152.
|
Lalande C, Bauerfeind E, Nöthig E M, et al. Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait[J]. Progress in Oceanography, 2013, 109:70-77.
|
Turner J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump[J]. Progress in Oceanography, 2015, 130:205-248.
|
Turner J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms[J]. Aquatic Microbial Ecology, 2002, 27(1):57-102.
|
Svensen C, Riser C W, Reigstad M, et al. Degradation of copepod faecal pellets in the upper layer:Role of microbial community and Calanus finmarchicus[J]. Marine Ecology Progress Series, 2012, 462:39-49.
|
Gowing M M, Wishner K F. Trophic relationships of deep-sea calanoid copepods from the benthic boundary layer of the Santa Catalina Basin, California[J]. Deep-Sea Research Part A Oceanographic Research Papers, 1986, 33(7):939-961.
|
Green E P, Harris R P, Duncan A. The production and ingestion of faecal pellets by nauplii of marine calanoid copepods[J]. Journal of Plankton Research, 1992, 14(12):1631-1643.
|
Lampitt R S, Noji T, Von Bodungen B. What happens to zooplankton faecal pellets? Implications for material flux[J]. Marine Biology, 1990, 104(1):15-23.
|
González H E, Smetacek V. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material[J]. Marine Ecology Progress Series, 1994, 113(3):233-246.
|
Svensen C, Nejstgaard J C. Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems[J]. Journal of Plankton Research, 2003, 25(8):917-926.
|
Noji T T, Estep K W, Macintyre F, et al. Image analysis of faecal material grazed upon by three species of copepods:evidence for coprorhexy, coprophagy and coprochaly[J]. Journal of the Marine Biological Association of the United Kingdom, 1991, 71(2):465-480.
|
Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1993, 40(6):1131-1140.
|
孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5):1191-1198. Sun Jun. Transparent Exopolymer Particles (TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5):1191-1198.
|
Engel A. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Mar Ecol Prog Ser, 2001, 219(8):1-10.
|
Mari X, Kiørboe T. Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat[J]. Journal of Plankton Research, 1996, 18(6):969-986.
|
Hong Y, Smith W O, White A M. Studies on transparent exopolymer particles (TEP) produced in the ross sea (Antarctica) and by Phaeocystis Antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3):368-376.
|
Alldredge A L, Passow U, Haddock H D. The characteristics and transparent exopolymer particle (TEP) content of marine snow formed from thecate dinoflagellates[J]. Journal of Plankton Research, 1998, 20(3):393-406.
|
Berman T, Viner-Mozzini Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret[J]. Aquatic Microbial Ecology, 2001, 24(3):255-264.
|
Grossart H P, Simon M, Logan B E. Formation of macroscopic organic aggregates (lake snow) in a large lake:the significance of transparent exopolymer particles, plankton, and zooplankton[J]. Limnology and Oceanography, 1997, 42(8):1651-1659.
|
Riley G A. Organic aggregates in seawater and the dynamics of their formation and utilization[J]. Limnology and Oceanography, 1963, 8(4):372-381.
|
Johnson B D, Cooke R C. Organic particle and aggregate formation resulting from the dissolution of bubbles in seawater[J]. Limnology and Oceanography, 1980, 25(4):653-661.
|
Leppard G G, West M M, Flannigan D T, et al. A classification scheme for marine organic colloids in the Adriatic Sea:colloid speciation by transmission electron microscopy[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(10):2334-2349.
|
Leppard G G. The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems[J]. Science of the Total Environment, 1995, 165(1/3):103-131.
|
Leppard G G, Heissenberger A, Herndl G J. Ultrastructure of marine snow. I. Transmission electron microscopy methodology[J]. Marine Ecology Progress Series, 1996, 135:289-298.
|
Leppard G G, Massalski A, Lean D R S. Electron-opaque microscopic fibrils in lakes:their demonstration, their biological derivation and their potential significance in the redistribution of cations[J]. Protoplasma, 1977, 92(3/4):289-309.
|
Stoderegger K, Herndl G J. Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton[J]. Limnology and Oceanography, 1998, 43(5):877-884.
|
Baldi F, Minacci A, Saliot A, et al. Cell lysis and release of particulate polysaccharides in extensive marine mucilage assessed by lipid biomarkers and molecular probes[J]. Mar Ecol Prog Ser, 1997, 153:45-57.
|
Shibata A, Kogure K, Koike I, et al. Formation of submicron colloidal particles from marine bacteria by viral infection[J]. Marine Ecology Progress Series, 1997, 155:303-307.
|
Wells M L, Goldberg E D. Colloid aggregation in seawater[J]. Marine Chemistry, 1993, 41(4):353-358.
|
Kepkay P E. Particle aggregation and the biological reactivity of colloids[J]. Marine Ecology Progress Series, 1994, 109:293-304.
|
Chin W C, Orellana M V, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels[J]. Nature, 1998, 391(6667):568-572.
|
Passow U. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean[J]. Mar Ecol Prog Ser, 1994, 113:185-198.
|
Passow U, Alldredge A L. Aggregation of a diatom bloom in a mesocosm:The role of transparent exopolymer particles (TEP)[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 1995, 42(1):99-109.
|
Grossart H P, Simon M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow)[J]. Aquatic Microbial Ecology, 1998, 15(2):127-140.
|
Kozlowski W, Vernet M, Lamerdin S. Predominance of cryptomonads and diatoms in Antarctic coastal waters[J]. Antarctic Journal of the United States, 1995, 30:267-268.
|
Passow U, Kozlowski W, Vernet M. Distribution of Transparent Exopolymer Particles (TEP) during summer at a permanent station in Antarctica[J]. Antarctic Journal of the United States, 1995, 30:265-266.
|
Schuster S, Herndl G J. Formation and significance of transparent exopolymer particles in the Northern Adriatic Sea[J]. Marine Ecology Progress Series, 1995, 124(1/3):227-236.
|
Ramaiah N, Yoshikawa T, Furuya K. Temporal variations in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan[J]. Marine Ecology Progress Series, 2001, 212(1):79-88.
|
Wild C. Effekte von "marine snow"-Sedimentation auf Steinkorallen (Hexacorallia, Scleractinia) des Great Barrier Reef, Australia[D]. Bremen:University of Bremen, Dept of Biology and Chemistry, 2000.
|
Passow U, Alldredge A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7):1326-1335.
|
Mari X, Dam H G. Production, concentration, and isolation of transparent exopolymeric particles using paramagnetic functionalized microspheres[J]. Limnology and Oceanography, 2004, 2(1):13-24.
|
Mari X, Burd A. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory[J]. Marine Ecology Progress Series, 1998, 163:63-76.
|
Krembs C E, Eicken H, Junge K, et al. High concentrations of exopolymeric substances in Arctic winter sea ice:implications for the polar ocean carbon cycle and cryoprotection of diatoms[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2002, 49(12):2163-2181.
|
Engel A. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton[J]. Journal of Plankton Research, 2002, 24(1):49-53.
|
García C M, Prieto L, Vargas M, et al. Hydrodynamics and the spatial distribution of plankton and TEP in the Gulf of Cádiz (SW Iberian Peninsula)[J]. Journal of Plankton Research, 2002, 24(8):817-833.
|
Fabricius K E, Wild C, Wolanski E, et al. Effects of transparent exopolymer particles and muddy terrigenous sediments on the survival of hard coral recruits[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4):613-621.
|
Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2004, 51(1):83-92.
|