Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zheng Xinqing, Kuo Fuwen, Liu Xinming, Lin Rongcheng, Zhou Zhidong, Shi Xiaofeng. Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coral Pocillopora damicornis[J]. Haiyang Xuebao, 2015, 37(10): 59-68. doi: 10.3969/j.issn.0253-4193.2015.10.006
Citation: Zheng Xinqing, Kuo Fuwen, Liu Xinming, Lin Rongcheng, Zhou Zhidong, Shi Xiaofeng. Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coral Pocillopora damicornis[J]. Haiyang Xuebao, 2015, 37(10): 59-68. doi: 10.3969/j.issn.0253-4193.2015.10.006

Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coral Pocillopora damicornis

doi: 10.3969/j.issn.0253-4193.2015.10.006
  • Received Date: 2015-03-25
  • Since the industrial revolution,large amounts of CO2 released by human activities into the atmosphere not only produce serious greenhouse effect,but also cause ocean acidification (OA). Reef-building corals are thought to the most sensitive to ocean acidification. Ocean acidification is predicted to impact the physiology of corals and reduce the calcification rates. In the present study,the calcification and photosynthesis capacity (Fv/Fm) of hermatypic coral Pocillopora damicornis was measured to study the physiological effect of OA by the simulation of further scenario of ocean acidification based on the gas exchange method. The experiment was conducted for 5 weeks in natural light with the seawater temperature controlled at 27.5℃ (±1℃) by the chiller. Two pH values (7.8 and 8.1,respectively) were set by pH regulation,which mediate the CO2 gas into experimental seawater. The diurnal variation of pH during the experiment was observed,with the pH values varied from 7.69 to 7.91 for the OA treatment and from 7.99 to 8.29 for the control due to the metabolic process (mainly respiration from the organisms). The results showed that the calcification rate of P. damicornis ranged from 1.15%~2.09%·week-1,and no significant difference was found in calcification and Fv/Fm between OA treatment and the control,indicating the low sensitivity of P. damicornis to OA. Compared to those previous publications,species-specific responses were further confirmed facing to OA. It is speculated that the tolerance of P. damicornis to OA may be due to the use of HCO3- in the light and up-regulation of pH in at their site of calcification. The capacity to up-regulate pH may be central to the resilience of P. damicornis to OA because the buffer capacity of pH can maintain relatively high the saturation of aragonite at their site of calcification and thus the calcification of corals at relatively low cost.
  • loading
  • Sabine C L,Feely R A,Gruber N,et al. The oceanic sink for anthropogenic CO2[J]. Science,2004,305(5682): 367-371.
    Raven J,Caldeira K,Elderfield H,et al. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide[M]. London: The Royal Society,2005.
    Houghton J T,Ding Y,Griggs D J,et al. Climate change 2001: the scientific basis[R]//Contribution of Working Group I to the Third Assessment Report of the Intergoverment Panel on Climate Change. Cambridge: Cambridge University Press,2001: 881.
    Brewer P G. Ocean chemistry of the fossil fuel CO2 signal: the haline signal of "business as usual"[J]. Geophysical Research Letters,1997,24(11): 1367-1369.
    Feely R A,Sabine C L,Lee K,et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science,2004,305(5682): 362-366.
    Kleypas J A,Langdon C. Coral reefs and changing seawater chemistry[M]//Phinney J T,Hoegh-Guldberg O,Kleypas J,eds. Coral Reefs and Climate Change: Science and Management. Washington,DC: American Geophysical Union,2006: 73-110.
    Anthony K R N,Kline D I,Diaz-Pulido G,et al. Ocean acidification causes bleaching and productivity loss in coral reef builders[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(45): 17442-17446.
    Fabry V J,Seibel B A,Feely R A,et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science,2008,65(3): 414-432.
    Langdon C,Takahashi T,Sweeney C,et al. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef[J]. Global Biogeochemical Cycles,2000,14(2): 639-654.
    Baker A C,Glynn P W,Riegl B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts,recovery trends and future outlook[J]. Estuarine,Coastal and Shelf Science,2008,80(4): 435-471.
    Gattuso J P,Allemand D,Frankignoulle M. Photosynthesis and calcification at cellular,organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry[J]. American Zoologist,1999,39(1): 160-183.
    Langdon C,Atkinson M J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment[J]. Journal of Geophysical Research: Oceans,2005,110(C9): C09S07.
    Albright R,Langdon C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides[J]. Global Change Biology,2011,17(7): 2478-2487.
    Comeau S,Edmunds P J,Spindel N B,et al. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations[J]. Limnology and Oceanography,2014,59(3): 1081-1091.
    Chauvin A,Denis V,Cuet P. Is the response of coral calcification to seawater acidification related to nutrient loading?[J]. Coral Reefs,2011,30(4): 911-923.
    Dufault A M,Ninokawa A,Bramanti L,et al. The role of light in mediating the effects of ocean acidification on coral calcification[J]. The Journal of Experimental Biology,2013,216: 1570-1577.
    Jokiel P L,Rodgers K S,Kuffner I B,et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation[J]. Coral Reefs,2008,27(3): 473-483.
    Ries J B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification[J]. Geochimica et Cosmochimica Acta,2011,75(14): 4053-4064.
    Huang Hui,Yuan Xiangcheng,Cai Weijun,et al. Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses[J]. Marine Ecology Progress Series,2014,502: 145-156.
    Comeau S,Carpenter R C,Nojiri Y,et al. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification[J]. Proceedings of the Royal Society of London B: Biological Sciences,2014,281(1790): 20141339.
    Comeau S,Edmunds P J,Spindel N B,et al. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point[J]. Limnology and Oceanography,2013,58(1): 388-398.
    Edmunds P J. Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp[J]. Limnology and Oceanography,2011,56(6): 2402-2410.
    Rodolfo-Metalpa R,Martin S,Ferrier-Pagès C,et al. Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD[J]. Biogeosciences,2010,7: 289-300.
    Takahashi A,Kurihara H. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment[J]. Coral Reefs,2013,32(1): 305-314.
    Movilla J,Orejas C,Calvo E,et al. Differential response of two Mediterranean cold-water coral species to ocean acidification[J]. Coral Reefs,2014,33(3): 675-686.
    McCulloch M,Falter J,Trotter J,et al. Coral resilience to ocean acidification and global warming through pH up-regulation[J]. Nature Climate Change,2012,2(8): 623-627.
    Ben-Haim Y,Zicherman-Keren M,Rosenberg E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus[J]. Applied and Environmental Microbiology,2003,69(7): 4236-4242.
    Ben-Haim Y,Thompson F L,Thompson C C,et al. Vibrio coralliilyticus sp. nov.,a temperature-dependent pathogen of the coral Pocillopora damicornis[J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(1): 309-315.
    Bourne D G,Munn C B. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef[J]. Environmental Microbiology,2005,7(8): 1162-1174.
    Lesser M P,Weis V M,Patterson M R,et al. Effects of morphology and water motion on carbon delivery and productivity in the reef coral,Pocillopora damicornis(Linnaeus): diffusion barriers,inorganic carbon limitation,and biochemical plasticity[J]. Journal of Experimental Marine Biology and Ecology,1994,178(2): 153-179.
    Richmond R H,Jokiel P L. Lunar periodicity in larva release in the reef coral Pocillopora damicornis at Enewetak and Hawaii[J]. Bulletin of Marine Science,1984,34(2): 280-287.
    Clausen C D,Roth A A. Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis[J]. Marine Biology,1975,33(2): 93-100.
    Erez J,Reynaud S,Silverman J,et al. Coral calcification under ocean acidification and global change[M]//Dubinsky Z,Stambler N,eds. Coral Reefs: An Ecosystem in Transition. Berlin: Springer,2011: 151-176.
    Wicks L C,Roberts J M. Benthic invertebrates in a high-CO2 world[M]//Gibson R N,Atkinson R J A,Gordon J,eds. Oceanography and Marine Biology: An Annual Review,2012,50: 127-188.
    Kleypas J A,Yates K K. Coral reefs and ocean acidification[J]. Oceanography,2009,22(4): 108-117.
    Ries J B,Cohen A L,McCorkle D C. A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula[J]. Coral Reefs,2010,29(3): 661-674.
    Comeau S,Carpenter R C,Edmunds P J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate[J]. Proceedings of the Royal Society B: Biological Sciences,2015,280(1753): 20122374.
    Jury C P,Whitehead R F,Szmant A M. Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra(=Madracis mirabilis sensu Wells,1973): bicarbonate concentrations best predict calcification rates[J]. Global Change Biology,2010,16(5): 1632-1644.
    Jokiel P L,Bahr K D,Rodgers K S. Low-cost,high-flow mesocosm system for simulating ocean acidification with CO2 gas[J]. Limnology and Oceanography: Methods,2014,12(5): 313-322.
    Burris J E,Porter J W,Laing W A. Effects of carbon dioxide concentration on coral photosynthesis[J]. Marine Biology,1983,75(2/3): 113-116.
    Goiran C,Al-Moghrabi S,Allemand D,et al. Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate[J]. Journal of Experimental Marine Biology and Ecology,1996,199(2): 207-225.
    Iguchi A,Ozaki S,Nakamura T,et al. Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis[J]. Marine Environmental Research,2012,73: 32-36.
    Hillhouse E W,Grammatopoulos D K. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology[J]. Endocrine Reviews,2006,27(3): 260-286.
    Carreiro-Silva M,Cerqueira T,Godinho A,et al. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification[J]. Coral Reefs,2014,33(2): 465-476.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1696) PDF downloads(1130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return