Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zheng Xinqing, Huang Lingfeng, Lin Rongcheng. Seasonal shifts in food sources influence feeding habits of three macrozoobenthos species in the Yundang Lagoon: the evidence from stable isotope[J]. Haiyang Xuebao, 2014, 36(12): 32-40. doi: 10.3969/j.issn.0253-4193.2014.12.003
Citation: Zheng Xinqing, Huang Lingfeng, Lin Rongcheng. Seasonal shifts in food sources influence feeding habits of three macrozoobenthos species in the Yundang Lagoon: the evidence from stable isotope[J]. Haiyang Xuebao, 2014, 36(12): 32-40. doi: 10.3969/j.issn.0253-4193.2014.12.003

Seasonal shifts in food sources influence feeding habits of three macrozoobenthos species in the Yundang Lagoon: the evidence from stable isotope

doi: 10.3969/j.issn.0253-4193.2014.12.003
  • Received Date: 2014-04-18
  • Rev Recd Date: 2014-06-02
  • Carbon and nitrogen stable isotope (δ13C and δ15N,respectively) analysis were made on three species of lagoon macrozoobenthos (suspension feeder Mytilopsis sallei,and deposit feeders Grandidierella japonica and Neanthes japonica) and their food sources in March and September in order to examine the influence of seasonal shifts in food sources to their feeding habits. The results showed that there is a significant difference in δ13C and δ15N of POM observed. Due to the large input of terrestrial debris and the sewage water discharged by the catering industry around the lagoon,lagoon POM in March was characterized by depleted-δ13C and δ15N. However,the contribution of phytoplankton increased in September as temperature increased. M. sallei was a typical benthic filter-feeder as suggested by the δ13C values closest to POM. However,it displayed a little more enriched in δ13C than POM,indicating that it may assimilate other δ13C-enriched organic matters,perhaps the debris from Ulva lactuca in March and benthic microalgae in September. Deposit feeder G. japonica and N. japonica mainly fed on U. lactuca and its associated epiphytes in March while obtained the carbon sources from benthic microalgae and phytoplankton in September. Our results indicated the significantly seasonal variations in δ15N for three macrozoobenthos species with the Δδ15N between 2.2‰ and 4.3‰,which may be caused by seasonal shifts of the stable isotope of food sources and their feeding habits. The differences of feeding habits for these macrozoobenthos were strongly affected by food availabilities in the lagoon.
  • loading
  • Baeta A, Pinto R, Valiela I, et al. δ15N and δ13C in the Mondego estuary food web: Seasonal variation in producers and consumers[J]. Marine Environmental Research, 2009, 67(3): 109-116.
    Maksymowska D, Richard P, Piekarek-Jankowska H, et al. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea)[J]. Estuarine, Coastal and Shelf Science, 2000, 51(5): 585-598.
    Carlier A, Riera P, Amouroux J M, et al. Food web structure of two Mediterranean lagoons under varying degree of eutrophication[J]. Journal of Sea Research, 2008, 60(4): 264-275.
    Cebrian J. Grazing on benthic primary producers[M]// Nielsen S L, Banta G T, Pedersen M F. Estuarine Nutrient Cycling: The Influence of Primary Producers. Netherlands: Springer, 2004: 153-185.
    Albertoni E F, Palma-Silva C, Esteves F A. Macroinvertebrates associated with Chara in a tropical coastal lagoon (Imboassica Lagoon, Rio de Janeiro, Brazil)[J]. Hydrobiologia, 2001, 457(1/3): 215-224.
    Fox S E, Teichberg M, Olsen Y S, et al. Restructuring of benthic communities in eutrophic estuaries: lower abundance of prey leads to trophic shifts from omnivory to grazing[J]. Marine Ecology Progress Series, 2009, 380: 43-57.
    Kanaya G, Kikuchi E. Spatial changes in a macrozoobenthic community along environmental gradients in a shallow brackish lagoon facing Sendai Bay, Japan[J]. Estuarine, Coastal and Shelf Science, 2008, 78(4): 674-684.
    Kanaya G, Suzuki T, Kikuchi E. Spatio-temporal variations in macrozoobenthic assemblage structures in a river-affected lagoon (Idoura Lagoon, Sendai Bay, Japan): influences of freshwater inflow[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1): 169-179.
    Little C. The Biology of Soft Shores and Estuaries[M]. London: Oxford University Press, 2000.
    Shimoda K, Aramaki Y, Nasuda J, et al. Food sources for three species of Nihonotrypaea (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan, as determined by carbon and nitrogen stable isotope analysis[J]. Journal of Experimental Marine Biology and Ecology, 2007, 342(2): 292-312.
    Doi H, Matsumasa M, Toya T, et al. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses[J]. Estuarine, Coastal and Shelf Science, 2005, 64(2/3): 316-322.
    Kanaya G, Takagi S, Kikuchi E. Spatial dietary variations in Laternula marilina (Bivalva) and Hediste spp. (Polychaeta) along environmental gradients in two brackish lagoons[J]. Marine Ecology Progress Series, 2008, 359: 133-144.
    林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013.
    Vander Zanden M J, Rasmussen J B. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies[J]. Limnology and Oceanography, 2001, 46(8): 2061-2066.
    Tsuchiya M, Kurihara Y. The feeding habits and food sources of the deposit-feeding polychaete, Neanthes japonica (Izuka)[J]. Journal of Experimental Marine Biology and Ecology, 1979, 36(1): 79-89.
    Yokoyama H, Sakami T, Ishihi Y. Food sources of benthic animals on intertidal and subtidal bottoms in inner Ariake Sound, southern Japan, determined by stable isotopes[J]. Estuarine, Coastal and Shelf Science, 2009, 82(2): 243-253.
    郑新庆, 黄凌风, 王蕾, 等. 筼筜湖大型海藻群落的几种藻栖端足类的种群动态研究[J]. 厦门大学学报 (自然科学版), 2011, 50(5): 928-933.
    李娟, 黄凌风, 郭丰, 等. 细基江蓠对氮、磷营养盐的吸收及其对赤潮发生的抑制作用[J]. 厦门大学学报, 2007, 46(2): 221-225.
    郑新庆, 黄凌风, 杜建国, 等. 筼筜湖绿潮期间颗粒有机物及沉积有机物的来源研究[J]. 海洋学报, 2013, 35(5): 102-111.
    Cooper L W, DeNiro M J. Stable carbon isotope variability in the seagrass Posidonia oceanica: Evidence for light intensity effects[J]. Marine Ecology Progress Series, 1989, 50: 225-229.
    Durako M, Hall M. Effects of light on the stable carbon isotope composition of the seagrass Thalassia testudinum[J]. Marine Ecology Progress Series, 1992, 86: 99-101.
    Grice A M, Loneragan N R, Dennison W C. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass[J]. Journal of Experimental Marine Biology and Ecology, 1996, 195(1): 91-110.
    Hofmann M, Wolf-Gladrow D A, Takahashi T, et al. Stable carbon isotope distribution of particulate organic matter in the ocean: a model study[J]. Marine Chemistry, 2000, 72(2/4): 131-150.
    Lin H J, Kao W Y, Wang Y T. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan[J]. Estuarine, Coastal and Shelf Science, 2007, 73(3/4): 527-537.
    Currin C A, Newell S Y, Paerl H W. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis[J]. Marine Ecoogy Progress Series, 1995, 121: 99-116.
    Moncreiff C A, Sullivan M J. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses[J]. Marine Ecology Progress Series, 2001, 215: 93-106.
    Jaschinski S, Brepohl D C, Sommer U. Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses[J]. Marine Ecology Progress Series, 2008, 358: 103-114.
    Gaston T F, Suthers I M. Spatial variation in δ13C and δ15N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage[J]. Journal of Experimental Marine Biology and Ecology, 2004, 304(1): 17-33.
    Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from theTay estuary, Scotland[J]. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233.
    Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary[J]. Marine Chemistry, 1998, 60(3/4): 217-225.
    Shang X, Zhang G S, Zhang J. Relative importance of vascular plants and algal production in the food web of a Spartina-invaded salt marsh in the Yangtze River estuary[J]. Marine Ecology Progress Series, 2008, 367: 93-107.
    Choy E J, Richard P, Kim K-R, et al. Quantifying the trophic base for benthic secondary production in the Nakdong River estuary of Korea using stable C and N isotopes[J]. Journal of Experimental Marine Biology and Ecology, 2009, 382(1): 18-26.
    Haines E B. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh[J]. Estuarine and Coastal Marine Science, 1976, 4(6): 609-616.
    Carlier A, Riera P, Amouroux J M, et al. A seasonal survey of the food web in the Lapalme Lagoon (northwestern Mediterranean) assessed by carbon and nitrogen stable isotope analysis[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1/2): 299-315.
    Page H M, Lastra M. Diet of intertidal bivalves in the Ria de Arosa (NW Spain): evidence from stable C and N isotope analysis[J]. Marine Biology, 2003, 143(3): 519-532.
    Martinetto P, Teichberg M, Valiela I. Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Waquoit Bay, Massachusetts, USA[J]. Marine Ecology Progress Series, 2006, 307: 37-48.
    Kanaya G, Nobata E, Toya T, et al. Effects of different feeding habits of three bivalve species on sediment characteristics and benthic diatom abundance[J]. Marine Ecology Progress Series, 2005, 299: 67-78.
    Aikins S, Kikuchi E. Grazing pressure by amphipods on microalgae in Gamo Lagoon, Japan[J]. Marine Ecology Progress Series, 2002, 245: 171-179.
    陈红星, 闫启仑, 韩明辅, 等. 室内培养底栖端足类日本大螯蜚饵料研究[J]. 海洋环境科学, 1998, 17(1): 21-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1583) PDF downloads(1180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return