Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhang Huatian, Li Jianghai, Li Honglin, Wang Honghao. A comparative study of the geology of Dur’ngoi copper massive sulfide deposit northern Qinghai-Tibet Plateau——A typical example of hydrothermal metallogenesis in a slow spreading mid-ocean ridge[J]. Haiyang Xuebao, 2014, 36(4): 40-51. doi: 10.3969/j.issn.0253-4193.2014.04.013
Citation: Zhang Huatian, Li Jianghai, Li Honglin, Wang Honghao. A comparative study of the geology of Dur’ngoi copper massive sulfide deposit northern Qinghai-Tibet Plateau——A typical example of hydrothermal metallogenesis in a slow spreading mid-ocean ridge[J]. Haiyang Xuebao, 2014, 36(4): 40-51. doi: 10.3969/j.issn.0253-4193.2014.04.013

A comparative study of the geology of Dur’ngoi copper massive sulfide deposit northern Qinghai-Tibet Plateau——A typical example of hydrothermal metallogenesis in a slow spreading mid-ocean ridge

doi: 10.3969/j.issn.0253-4193.2014.04.013
  • Received Date: 2013-04-17
  • Rev Recd Date: 2013-09-01
  • Qinghai Dur'ngoi Cu Massive Sulfide Deposit is located in Northern Qinghai-Tibet Plateau. Its country rock is ultramafic rocks of A'nyemaqen Ophiolite, which represent relicts of Paleo-Tethys Ocean. Dur'ngoi Cu massive sulfide deposit is analyzed in detail, and considered it to preserve an abundance of geology record of submarine hydrothermal activities, which include: thin layers of exhalite on the top of the ore body; colloidal, framboidal, and brecciated textures preserved in porous sulfides; major minerals components; calcite or felsic minerals cementing pyrite breccia; and similar zonation with the Atlantic hydrothermal complex rainbow and TAG. We estimated the spreading rate of the segment of Paleo-Tethys Ocean represented by Dur'ngoi Ophiolite is through the bulk TiO2 composition of basalts. Result turns out to be 1.1—2.5 cm/a. By analogy of the modern hydrothermal sulfide fields, it is put forward that Dur'ngoi Cu massive sulfide deposit experience three major steps: submarine hydrothermal metallogenesis, submarine colling, and subduction emplacement. The first step is supposed to be genetically related to oceanic core complex. In the third step, emplacement of ore body, ultramafic rocks, and basalts are controlled by thrust faults. Compared with similar deposits on land, Dur'ngoi Cu massive sulfide deposit is younger (carboniferous) and much better preserved. It's a typical example of hydrothermal metallogenesis in slow spreading mid-ocean ridge, and can be called Dur'ngoi type.
  • loading
  • 段国莲. 德尔尼黄铁矿型铜钻矿床物质成分赋存状态及综合评估[J]. 化工地质, 1992, 14(1): 8-16.
    章午生. 块状硫化物矿床的一个特殊类型——德尔尼铜矿[J]. 甘肃地质学报, 1995, 4(2): 22-31.
    王玉往, 秦克章. VAMSD矿床系列最基性端员——青海省德尔尼大型铜钴矿床的地质特征和成因类型[J]. 矿床地质, 1997, 16(1): 1-10.
    刘增铁. 青海铜矿[M]. 北京: 地质出版社, 2008.
    宋忠宝, 任有祥, 陈向阳, 等. 青海德尔尼铜(钴)矿成矿类型及物探技术应用[M]. 北京: 地质出版社, 2010.
    Yang J S, Zheng X H, Bai W J, et al. A Preliminary Study on Genesis of the Dur'ngoi Massive Cu-Co-Zn Sulfide Deposit Hosted by the Peridotite of A'nyemaqen Ophiolite, Kunlun Mt., China . Proc. 30th IGC. 1997, 9: 382-391.
    Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155-1158.
    Tivey M A, Schouten H, Kleinrock M C. A near-bottom magnetic survey of the mid-Atlantic Ridge axis at 26°N: Implications for the tectonic evolution of the TAG segment[J]. Journal of Geophysical Research, 2003, 108(B5): 1-13.
    Mccaig A M, Cliff R A, Escartin J, et al. Oceanic detachment faults focus very large volumes of black smoker fluids[J]. Geology, 2007, 35(10): 935-938.
    Fouquet Y, Cherkashov G, Charlou J L, et al. Serpentine cruise-ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields[J]. InterRidge News, 2008, 17: 16-21.
    Marques A F A, Barriga F J A S, Scott S D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides[J]. Marine Geology, 2007, 245: 20-39.
    Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J]. Chemical Geology, 2002, 184: 37-48.
    Augustin N. The Logatchev Hydrothermal Field (MAR, 15°N): High-and Low-Temperature Alteration of Ultramafic Oceanic Crust-Geology, Geochemistry, Mineralogy . Kiel: University of Kiel, 2007.
    Seyfried W E, Pester N J, Ding K, et al. Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): phase equilibria and in situ pH controls on subseafloor alteration processes[J]. Geochimica et Cosmochimica Acta, 2011, 75: 1574-1593.
    Beltenev V, Nescheretov A, Shilov V, et al. New discoveries at 12°58'N, 44°52'W, MAR: Professor Logatchev-22 cruise, initial results[J]. InterRidge News, 2003, 12: 13-14.
    Lein A Y, Ulyanova N V, Ulyanov A, et al. Mineralogy and geochemistry of sulfide ores in oceanfloor hydrothermal fields associated with serpentine protrusions[J]. Russian Journal of Earth Sciences, 2001, 3(5):.
    Rouxel O, Fouquet Y, Ludden J. Copper isotope systematics of the Lucky Strike, Rainbow and Logatchev seafloor hydrothermal fields in the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 99: 585-600.
    Marques A F A, Barriga F J A S, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge[J]. Mineralium Deposita, 2006, 41: 52-67.
    Escartin J, Canales J P. Detachments in oceanic lithosphere: Deformation, magmatism, fluid flow and ecosystems . Eos, Transactions, American Geophysical Union, 2011, 92(4): 31.
    Allen D E, Seyfried W E. Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1347-1354.
    Kelley D S, Karson J A, Fruh-green G L, et al. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field[J]. Science, 2005, 307: 1428-1434.
    Bach W, Fruh-green G L. Alteration of the Oceanic Lithosphere and Implications for Seafloor Processes[J]. Elements, 2010, 6: 173-178.
    裴先治. 勉略—阿尼玛抑构造带的形成演化与动力学特征 . 西安: 西北大学, 2001.
    姜春发, 杨经绥, 冯秉贵, 等. 昆仑开合构造[M]. 北京: 地质出版社, 1992.
    许志琴, 李海兵, 杨经绥,等. 东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J]. 地质学报, 2001, 75(2): 156-164.
    陈亮, 孙勇, 裴先治, 等. 德尔尼蛇绿岩40Ar-39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据[J]. 科学通报, 2001, 46 (5): 424-426.
    杨经绥, 王希斌, 史仁灯, 等. 青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳[J]. 中国地质, 2004, 31(3): 225-239.
    陈亮, 孙勇, 柳小明, 等. 青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J]. 岩石学报, 2000, 16(1): 106-110.
    章午生. 德尔尼铜矿地质[M]. 北京: 地质出版社, 1981.
    冯读均. 中国矿床发现史·青海卷[M]. 北京: 地质出版社, 1996.
    Ridler R H. Analysis of Archean volcanic basins in the Canadian Shield using the exhalite concept[J]. Bulletin of the Canadian Institute of Mining and Metallurgy, 1971, 64(714): 20.
    Shanks W C PAT III, Thurston R. Volcanogenic massive sulfide occurrence model[M]. U.S. Geological Survey Scientific Investigations Report, 2012, 2010-5070-C:1-345.
    [tine孮彴孡l 桄乹艮am险呣陳, 笱99丶昬丠弱尺尠鐷眰唭洸尰??鑢硲贾屛瘵匶獝匠克扯睮慳乴antin坯赶遳扫aia E A, Maurice B, Malavieille J. Discovery of the Paleo-Tethys residual peridotites along the Anyemaqen-KunLun suture zone (North Tibet)[J]. C R Geoscience, 2003, 335: 709-719.
    Peltonen P, Kontinen A, Huhma H, et al. Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu-Co-Zn-Ni-Ag-Au sulphide deposits[J剝儮匠Or陥丠葇eo奬襯浧乹脠聒牥鹶鑩睥癷牳弬匠儲戰嘰8, 33洺洠丵渵氹-617.
    Auclair M, Gauthier M, Trottier J, et al. Mineralogy, geochemistry, and paragenesis of the Eastern Metal serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians[J]. Economic Geology, 1993, 88: 123-138.
    Candela P A, Wylie A G, Burke T M. Genesis of the ultramafic rock-associated Fe-Cu-Co-Zn-Ni deposits of the Sykesville district, Maryland Piedmont[J]. Economic Geology, 1989, 84: 663-675.
    Leblanc M, Billaud P. Cobalt arsenide orebodies related to an upper Proterozoic ophiolite: Bou Azzer (Morocco)[J]. Economic Geology, 1982, 77: 162-175.
    Buck W R, Lavier L L, Poliakov A N B. Modes of faulting at mid-ocean ridges[J]. Nature, 2005, 434: 719-723.
    Smith D K, Cann J R, Escartin J, et al. Widespread active detachment faulting and core complex formation near 138°N on the Mid-Atlantic Ridge [J]. Nature, 2006, 442: 440-443.ona P A, Hannington M D, Raman C V, et al. Active and relic seafloor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Economic Geology, 1993, 88: 1989-2017.
    Herzig P M, Hannington M D. Polymetallic massive sulfides at the modern seafloor: A review[J]. Ore Geology Review, 1995, 10: 95-115.
    Tivey M K. The formation of mineral deposits at mid-ocean ridges[J]. Oceanus, 1998, 41(2): 22-26.
    Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1): 50-65.
    Large R. Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models[J]. Economic Geology, 1992, 87: 471-510.
    Barrie C T, Hannington M D. Introduction: classification of VMS deposits based on host rock composition[C]// Barrie C T, Hannington M D. Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings. SEG, 1997, 8: 1-12 (Ottawa).
    Alt J. Subseafloor processes in mid-ocean ridge hydrothermal systems[C]// Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Humphris S E, Zierenberg R A, Mullineaux L S, Thomson R E, AGU Monograph Series, No. 91, American Geophysical Union, Washington DC,1995: 85-114.
    Tao C H, Li H M, Huang W, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39'E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56: 2828-2838.
    Tesalina S G, Nimis P, Auge T. Origin of chromite in mafic-ultramafic-hosted hydrothermal massive sulfides from the Main Uralian Fault, South Urals, Russia[J]. Lithos, 2003, 70(1/2): 39-59.
    Nimis P, Zaykov V V, Omenetto P, et al. Peculiarities of some mafic-ultramafic-and ultramafic-hosted massive sulfide deposits from the Main Uralian Fault Zone, southern Urals[J]. Ore Geology Reviews, 2008, 33: 49-69.
    Constantinou G, Govett G J S. Geology, geochemistry, and genesis of Cyprus sulfide deposits[J]. Economic Geology, 1973, 68(6): 843-858.
    彭翼, 燕长海, 万守全, 等. 东秦岭刘山岩块状硫化物矿床地质地球化学特征[J]. 地质论评, 2005, 51(5): 550-557.
    燕长海, 徐勇航, 彭翼, 等. 东秦岭二郎坪群中火山成因块状硫化物矿床地质地球化学特征及其成因讨论[J]. 矿床地质, 2008, 27(1): 14-27.
    Nisbet E, Pearce J A. TiO2 and a possible guide to past oceanic spreading rates[J]. Nature, 1973, 246: 468-470.
    Yang J S, Shi R D, Wu C L, et al. Dur'ngoi Ophiolite in East Kunlun, NortheastTibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China[J]. Journal of Earth Science, 2009, 20(2): 303-331.
    Yang J S, Hall J M. An intermediate-fast spreading rate of the Troodos type oceanic crust: a comparison to modern oceanic crusts[J]. Con
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1712) PDF downloads(1286) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return