Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhao Meixun, Yu Meng, Zhang Hailong, Tao Shuqin. Applications of compound-specific radiocarbon analysis in oceanography and environmental science[J]. Haiyang Xuebao, 2014, 36(4): 1-10. doi: 10.3969/j.issn.0253-4193.2014.04.006
Citation: Zhao Meixun, Yu Meng, Zhang Hailong, Tao Shuqin. Applications of compound-specific radiocarbon analysis in oceanography and environmental science[J]. Haiyang Xuebao, 2014, 36(4): 1-10. doi: 10.3969/j.issn.0253-4193.2014.04.006

Applications of compound-specific radiocarbon analysis in oceanography and environmental science

doi: 10.3969/j.issn.0253-4193.2014.04.006
  • Received Date: 2013-05-03
  • Rev Recd Date: 2013-08-19
  • Compound-specific radiocarbon analysis (CSRA) is a novel approach to isolate and recover sufficient quantities of individual target compounds (so-called biomarker) from complex organic matrices for Accelerator Mass Spectrometry (AMS) radiocarbon (14C) analysis. This molecular level radiocarbon analysis can reveal the isotopic heterogeneity of total organic carbon, which provides a new approach to understand the carbon source, migration and transformation. In oceanography, CSRA can provide direct information about the residence time of carbon in global reservoirs and estimate the contribution of fossil carbon input; to indicate sediment deposit processes in the past; to understand the prokaryotic metabolic pathways and refine the sediment chronologies. In environmental science, CSRA can be used as a tool for source apportionment of toxic compounds (e.g., PAHs) and for the determination of microbial carbon sources in petroleum contaminated sediments. As the individual compound separation technology and AMS sensitivity both improve, CSRA technology will be more widely applied in the future.
  • loading
  • 王旭晨, 戴民汉. 天然放射性碳同位素在海洋有机地球化学中的应用[J]. 地球科学进展, 2002, 17(3): 348—354.
    Eglinton T I, Aluwihare L I, Bauer J E, et al. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating[J]. Analytical Chemistry, 1996, 68(5): 904—912.
    Eglinton T I, Benitez-Nelson B C, Pearson A, et al. Variability in radiocarbon ages of individual organic compounds from marine sediments[J]. Science, 1997, 277(5327): 796—799.
    Pearson A, Eglinton T I. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound-specific Δ14C & δ13C data[J]. Organic Geochemistry, 2000, 31(2000): 1103—1116.
    Drenzek N J, Montluon D B, Yunker M B, et al. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular13C and14C measurements[J]. Marine Chemistry, 2007, 103(1): 146—162.
    Drenzek N J, Hughen K A, Montluon D B, et al. A new look at old carbon in active margin sediments[J]. Geology, 2009, 37(3): 239—242.
    Ohkouchi N, Eglinton T I, Keigwin L D, et al. Spatial and temporal offsets between proxy records in a sediment drift[J]. Science, 2002, 298(5596): 1224—1227.
    Mollenhauer G, Eglinton T, Ohkouchi N, et al. Asynchronous alkenone and foraminifera records from the Benguela Upwelling System[J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2157—2171.
    Mollenhauer G, Kienast M, Lamy F, et al. An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments[J]. Paleoceanography, 2005, 20(1): PA1016.
    Pearson A, Eglinton T I, McNichol A P. An organic tracer for surface ocean radiocarbon[J]. Paleoceanography, 2000, 15(5): 541—550.
    Pearson A, McNichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using Compound-specific Δ14C analysis[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3123—3137.
    Petsch S, Eglinton T, Edwards K. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering[J]. Science, 2001, 292(5519): 1127—1131.
    Slater G F, White H K, Eglinton T I, et al. Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis[J]. Environmental Science & Technology, 2005, 39(8): 2552—2558.
    Ohkouchi N, Eglinton T I, Hayes J M. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies[J]. Radiocarbon, 2003, 45(1): 17—24.
    Smittenberg R H, Hopmans E C, Schouten S, et al. Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada[J]. Paleoceanography, 2004, 19(2): PA2012.
    Uchida M, Shibata Y, Kawamura K, et al. Compound-specific radiocarbon ages of fatty acids in marine sediments from the western North Pacific[J]. Radiocarbon, 2006, 43(2B): 949—956.
    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2): 81—115.
    Gordon E S, Goni M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2359—2375.
    Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean ? [J]. Organic Geochemistry, 1997, 27(5/6): 195—212.
    Marret F, Scourse J D, Versteegh G, et al. Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation[J]. Journal of Quaternary Science, 2001, 16(8): 761—766.
    Weijers J W H, Schouten S, Schefu E, et al. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: A multi-proxy approach in a 20 000 year sediment record from the Congo deep-sea fan[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 119—132.
    Bourbonniere R A, Meyers P A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie[J]. Limnology and Oceanography, 1996, 41(2): 352—359.
    Xing L, Zhang H, Yuan Z, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1106—1115.
    Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1): 107—116.
    Blair N E, Leithold E L, Ford S T, et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 63—73.
    Blair N E, Leithold E L, Aller R C. From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems[J]. Marine Chemistry, 2004, 92(1): 141—156.
    Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972): 336—339.
    Goi M A, Yunker M B, Macdonald R W, et al. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean[J]. Marine Chemistry, 2005, 93(1): 53—73.
    Komada T, Druffel E R M. Trumbore S E. Oceanic export of relict carbon by small mountainous rivers[J]. Geophysical Research Letters, 2004, 31(7): L07504.
    Komada T, Druffel E R M, Hwang J. Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes[J]. Global Biogeochemical Cycles, 2005, 19(2): GB2017.
    Feng X, Benitez-Nelson B C, Montluon D B, et al. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments[J]. Geochimica et Cosmochimica Acta, 2013, 105: 14—30.
    Keigwin L D. The little ice age and medieval warm period in the Sargasso Sea[J]. Science, 1996, 274(5292): 1503—1508.
    Mollenhauer G, Eglinton T I. Diagenetic and sedimentological controls on the composition of organic matter preserved in California Borderland Basin sediments[J]. Limnology and oceanography, 2007, 52(2): 558—576.
    Mollenhauer G, McManus J F, Benthien A, et al. Rapid lateral particle transport in the Argentine Basin: Molecular 14C and 230Thxs evidence[J]. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 2006, 53(7): 1224—1243.
    Kusch S, Eglinton T I, Mix A C, et al. Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera[J]. Earth and Planetary Science Letters, 2010, 290(3): 340—350.
    Ingalls A E, Pearson A. Compound-Specific Radiocarbon Analysis[J]. Oceanography, 2005, 18(3): 18—31.
    Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409: 507—510.
    Schouten S, Hopmans E C, Pancost R D, et al. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles[J]. Proceedings of the National Academy of Sciences, 2000, 97(26): 14421—14426.
    Sinninghe D J S, Rijpstra W I C, Hopmans E C, et al. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea[J]. Applied and Environmental Microbiology, 2002, 68(6): 2997—3002.
    Hoefs M J L, Schouten S, De Leeuw J W, et al. Ether lipids of planktonic archaea in the marine water column[J]. Applied and Environmental Microbiology, 1997, 63(8): 3090—3095.
    Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event[J]. Science, 2001, 293(5527): 92—95.
    Wuchter C, Schouten S, Boschker H T S, et al. Bicarbonate uptake by marine Crenarchaeota[J]. FEMS microbiology letters, 2003, 219(2): 203—207.
    Herndl G J, Reinthaler T, Teira E, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71(5): 2303—2309.
    Knneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543—546.
    Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683—14688.
    Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(4): 520—536.
    Ouverney C C, Fuhrman J A. Marine planktonic Archaea take up amino acids[J]. Applied and Environmental Microbiology, 2000, 66(11): 4829—4833.
    Ingalls A E, Shah S R, Hansman R L, et al. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6442—6447.
    Hajdas I. Applications of Radiocarbon Dating Method[J]. Radiocarbon, 2009, 51(1): 79—90.
    Olsson I. Accuracy and precision in sediment chronology[J]. Hydrobiologia, 1991, 214(1): 25—34.
    Stuiver M, Polach H A. Discussion: reporting of C-14 data[J]. Radiocarbon, 1977, 19(3): 355—363.
    Uchikawa J, Popp B N, Schoonmaker J E, et al. Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology[J]. Journal of Paleolimnology, 2008, 39(1): 43—60.
    Mollenhauer G, Rethemeyer J. Compound-specific radiocarbon analysis—Analytical challenges and applications[J]. IOP Confererence Series: Earth and Environmental Science 2009, 5(1): 012006.
    Pearson A, McNichol A P, Schneider R J, et al. Microscale AMS 14C measurement at NOSAMS[J]. Radiocarbon, 1998, 40(1): 61—75.
    Suntia R S, Pearson A. Ultra-microscale (5~25 μg C) analysis of individual lipids by 14C AMS: assessment and correction for sample processing blanks[J]. Radiocarbon, 2007, 49(1): 69—82.
    Ohkouchi N, Eglinton T I. Compound-specific radiocarbon dating of Ross Sea sediments: A prospect for constructing chronologies in high-latitude oceanic sediments[J]. Quaternary Geochronology, 2008, 3(3): 235—243.
    Uchida M, Shibata Y, Ohkushi K, et al. Age discrepancy between molecular biomarkers and calcareous foraminifera isolated from the same horizons of Northwest Pacific sediments[J]. Chemical Geology, 2005, 218(1/2): 73—89.
    Zencak Z, Klanova J, Holoubek I, et al. Source apportionment of atmospheric PAHs in the western Balkans by natural abundance radiocarbon analysis[J]. Environmental Science & Technology, 2007, 41(11): 3850—3855.
    Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489—515.
    Mandalakis M, Gustafsson , Reddy C M, et al. Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbons in the Stockholm metropolitan area[J]. Environmental Science & Technology, 2004, 38(20): 5344—5349.
    Currie L A, Eglinton T I, Benner Jr B A, et al. Radiocarbon "dating" of individual chemical compounds in atmospheric aerosol: First results comparing direct isotopic and multivariate statistical apportionment of specific polycyclic aromatic hydrocarbons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 123(1): 475—486.
    Reddy C M, Pearson A, Xu L, et al. Radiocarbon as a tool to apportion the sources of Polycyclic Aromatic Hydrocarbons and Black Carbon in environmental samples[J]. Environmental Science & Technology, 2002, 36(8): 1774—1782.
    Sheesley R J, Krus M, Krecl P, et al. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis[J]. Atmospheric Chemistry and Physics, 2009, 9: 3347—3356.
    Mandalakis M, Gustafsson , Alsberg T, et al. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites[J]. Environmental Science & Technology, 2005, 39(9): 2976—2982.
    Kumata H, Uchida M, Sakuma E, et al. Compound class specific 14C analysis of polycyclic aromatic hydrocarbons associated with PM10 and PM1. 1 aerosols from residential areas of suburban Tokyo[J]. Environmental Science & Technology, 2006, 40(11): 3474—3480.
    Kanke H, Uchida M, Okuda T, et al. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223/224: 545—554.
    Utkina N K, Denisenko V A, Virovaya M V, et al. Two new minor polybrominated dibenzo-p-dioxins from the marine sponge Dysidea dendyi[J]. Journal of Natural Products, 2002, 65(8): 1213—1215.
    Kuniyoshi M, Yamada K, Higa T. A biologically active diphenyl ether from the green alga Cladophora fascicularis[J]. Experientia, 1985, 41(4): 523—524.
    Kierkegaard A, Bignert A, Sellstrm U, et al. Polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in pike from Swedish waters with emphasis on temporal trends, 1967—2000[J]. Environmental Pollution, 2004, 130(2): 187—198.
    Reddy C M, Xu L, Eglinton T I, et al. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds[J]. Environmental Pollution, 2002, 120(2): 163—168.
    Reddy C M, Xu L, ONeil G W, et al. Radiocarbon evidence for a naturally produced, bioaccumulating halogenated organic compound[J]. Environmental Science & Technology, 2004, 38(7): 1992—1997.
    Teuten E L, Xu L, Reddy C M. Two abundant bioaccumulated halogenated compounds are natural products[J]. Science, 2005, 307(5711): 917—920.
    Guitart C, Slattery M, Ankisetty S, et al. Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge-cyanobacteria associations[J]. Marine Pollution Bulletin, 2011, 62(3): 631—636.
    Teuten E L, Reddy C M. Halogenated organic compounds in archived whale oil: a pre-industrial record[J]. Environmental Pollution, 2007, 145(3): 668—671.
    Slater G F, Nelson R K, Kile B M, et al. Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis[J]. Organic Geochemistry, 2006, 37(9): 981—989.
    Harvey H R, Fallon R D, Patton J S. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 795—804.
    Wakeham S G, McNichol A P, Kostka J E, et al. Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1761—1771.
    Cowie B R, Greenberg B M, Slater G F. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance 14C analysis of PLFA[J]. Environmental Science & Technology, 2010, 44(7): 2322—2327.
    Pearson A, Seewald J S, Eglinton T I. Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin[J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5477—5486.
    Ball G I, Xu L, McNichol A P, et al. A two-dimensional, heart-cutting preparative gas chromatograph facilitates highly resolved single-compound isolations with utility towards compound-specific natural abundance radiocarbon (14C) analyses[J]. Journal of Chromatography A, 2012, 1220: 122—131.
    Santos G M, Southon J R, Drenzek N J, et al. Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS[J]. Radiocarbon, 2010, 52: 1322—1335.
    McIntyre C P, Galutschek E, Roberts M L, et al. A continuous-flow gas chromatography 14C accelerator mass spectrometry system[J]. Radiocarbon, 2010, 52: 295—300.
    Uchida M, Shibata Y, Yoneda M, et al. Technical progress in AMS microscale radiocarbon analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223/224: 313—317.
    Wang X C, Li A C. Preservation of black carbon in the shelf sediments of the East China Sea[J]. Chinese Science Bulletin, 2007, 52(22): 3155—3161.
    Kao S, Dai M, Wei K, et al. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation[J]. Paleoceanography, 2008, 23(2): PA2207.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1832) PDF downloads(2718) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return