Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
XU Xuemei, ZHAI Weidong, WU Jinhao. Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum[J]. Haiyang Xuebao, 2013, 35(5): 112-120. doi: 10.3969/j.issn.0253-4193.2013.05.012
Citation: XU Xuemei, ZHAI Weidong, WU Jinhao. Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum[J]. Haiyang Xuebao, 2013, 35(5): 112-120. doi: 10.3969/j.issn.0253-4193.2013.05.012

Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum

doi: 10.3969/j.issn.0253-4193.2013.05.012
  • Received Date: 2012-12-19
  • A popularly cultured marine shellfish (Ruditapes philippinarum) was exposed to a series of CO2-acidified seawaters for 4 hours. The waters had a constant salinity of 30.7 and an alkalinity of 2 350 μmol/kg. Both were the typical values of the surface water of Bohai Sea. Using the alkalinity anomaly method, effects of CO2-driven ocean acidification on the calcification and respiration of R. philippinarum were investigated. The results showed that, slight shell dissolution and significant respiration decline of R. philippinarum occurred under several short-term CO2-acidified scenarios. A function of CaCO3 production rate (G) versus CaCO3 saturation of aragonite (Ωarag) had been developed as G(μmol/FWg·h)=0.14 × Ωarag-0.49 (n=12, r=0.95, p<0.01). This function suggested that the shell is instable on the conditions of Ωarag <3.5. However in a scenario where Ωarag decreases to 1.0-1.5 in CO2-acidified subsurface waters in the Bohai Sea (in late summer) and the North Yellow Sea (in autumn), the daily dissolved shell is only equivalent to insignificantly <2‰ of the net shell weight. In contrast, respiration declines and metabolic activity changes of R. philippinarum under CO2-driven acidification were more notable. The function of inorganic carbon production rate (RC) of R. philippinarum versus Ωarag was RC(μmol/FWg·h)=0.27 × Ωarag+0.90 (n=12, r=0.82, p<0.01), suggesting that declines of Ωarag had negative impacts on respiration much more than shell dissolution.
  • loading
  • Le Quéré C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature Geoscience, 2009, 2: 831—836.
    Khatiwala S. Fast spin up of ocean biogeochemical models using matrix-free Newton-Krylov[J]. Ocean Modelling, 2008, 23: 121—129.
    Fabry V J, Seibel B A, Feely R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science, 2008, 65: 414—432.
    Burns W C G. Anthropogenic carbon dioxide emissions and ocean acidification: The potential impacts on ocean biodiversity[A]//Robert A. Askins, Glenn D. Dreyer, Gerald R. Visgilio, Diana M. Whitelaw. Saving Biological Diversity[C]. Berlin: Springer Science and Business Media, 2008:187—202.
    Shamberger K E F, Feely R A, Sabine C L, et al. Calcification and organic production on a Hawaiian coral reef[J]. Marine Chemistry, 2011, 127: 64—75.
    Pelletier G J, Lewis E, Wallace D W R. CO2SYS.XLS: A calculator for the CO2 system in seawater for Microsoft Excel/VBA. Version 16. Olympia (Washington): Washington State Department of Ecology, 2011 (available at : http://www.ecy.wa.gov/programs/eap/models.html).
    Gao K S, Aruga Y, Asada K, et al. Calcification in the articulated coralline alga Carollina pilulifera, with special reference to the effect of elevated CO2 concentration[J]. Marine Biology, 1993, 117: 129—132.
    Zeebe R E, Zachos J C, Caldeira K, et al. Carbon emissions and acidification[J]. Science, 2008, 321: 51—52.
    Hall-Spencer J M, Rodolfo-Metalpa R, Martin S, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification[J]. Nature, 2008, 454: 96—99.
    Talmage S C, Gobler C J. Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves[J]. PloS ONE, 2011, 6(10): e26941. doi: 10.1371/journal.pone.0026941
    Bibby R, Cleall-Harding P, Rundle S, et al. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea[J]. Biology Letters, 2007, 3: 699—701.
    Baumann H, Talmage S C, Gobler C J. Reduced early life growth and survival in a fish indirect response to increased carbon dioxide[J]. Nature Climate Change, 2012, 2: 38—41.
    Munday P L, Dixson D L, McCormick M I, et al. Replenishment of fish populations is threatened by ocean acidification[J]. Proceeding of the National Academy of Sciences of the United States of America, 2010, 107: 12930—12934.
    Domenici P, Allan B, McCormick M I, et al. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish[J]. Biology Letters, 2012, 8: 78—81.
    Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425:365.
    Kleypas J A, Feely R A, Fabry V J. et al. Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research[R]. Boulder, Colorado: Institute for the Study of Society and Environment (ISSE) of the University Corporation for Atmospheric Research (UCAR), 2006, 1—88.
    Kelly R P, Foley M M, Fisher W S, et al. Mitigating local causes of ocean acidification with existing laws[J]. Science, 2011, 332: 1036—1037.
    Gruber N, Hauri C, Lachkar Z, et al. Rapid progression of ocean acidification in the California current system[J]. Science, 2012, 337: 220—223.
    翟惟东, 赵化德, 郑楠, 等. 2011年夏季渤海西北部、北部近岸海域的底层耗氧与酸化[J]. 科学通报, 2012, 57(9): 753—758.
    Zhai W D, Zheng N, Huo C, et al. Subsurface low pH and carbonate saturation state of aragonite on China side of the North Yellow Sea: combined effects of global atmospheric CO2 increase, regional environmental changes, and local biogeochemical processes[J]. Biogeosciences discussion, 2013, 10: 3079—3120.
    Dickson A G. The development of the alkalinity concept in marine chemistry[J]. Marine Chemistry, 1992, 40: 49—63.
    Gazeau F, Quiblier C, Jansen J M, et al. Impacts of elevated CO2 on shellfish calcification[J]. Geophysical Research Letters, 2007, 34: L07603, doi: 10.1029/2006GL028554.
    Smith S V, Key G S. Carbon dioxide and metabolism in marine environments[J]. Limnology and Oceanography, 1975, 20: 493—495.
    Fraga F, Ríos A F, Pérez F F,et al. Theoretical limits of oxygen: carbon and oxygen: nitrogen ratios during photosynthesis and mineralization of organic matter in the sea[J]. Scientia Marina, 1998, 62(1/2):161—168.
    刘升发, 范德江, 颜文涛, 等. 菲律宾蛤仔壳体和湿重生长率及影响因素浅析[J]. 海洋科学进展, 2008, 26(1): 82—89.
    郭永禄, 任一平, 杨汉斌. 胶州湾菲律宾蛤仔生长特征研究[J]. 中国海洋大学学报, 2005, 35 (5): 779—784.
    刘升发, 范德江, 石学法, 等. 菲律宾蛤仔壳体生长过程中Ca, Mg, Sr, Mn和Fe元素富集规律研究[J]. 海洋通报, 2008, 27(2): 43—51.
    唐敏, 石安静. 贝类钙代谢研究概况[J]. 水产学报, 2000, 24(1): 86—91.
    Millero F J, Graham T B, Huang F, et al. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature[J]. Marine Chemistry, 2006, 100: 80—94.
    Dickson A G. Standard potential of the reaction: AgCl(s)+1/2 H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO-4 in synthetic sea water from 273.15 to 318.15 K[J]. Journal of Chemical Thermodynamics, 1990, 22: 113—127.
    Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure[J]. American Journal of Science, 1983, 283: 780—799.
    Waldbusser G G, Steenson R A, Green M A. Oyster shell dissolution rates in estuarine waters: effects of pH and shell legacy[J]. Journal of Shellfish Research, 2011, 30(3): 659—669.
    Yamamoto S, Kayanne H, Terai M, et al. Threshold of carbonate saturation state determined by CO2 control experiment[J]. Biogeosciences, 2012, 9: 1441—1450.
    Suzuki A, Nakamori T, Kayanne H. The mechanism of production enhancement in coral reef carbonate system: model and empirical results[J]. Sedimentary Geology, 1995, 99: 259—280.
    Michaelidis B, Ouzounis C, Paleras A,et al. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis[J]. Marine Ecology Progress Series, 2005, 293: 109—118.
    沈同, 王镜岩. 生物化学[M]. 第2版. 北京: 高等教育出版社, 1991:1—1090.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1464) PDF downloads(1526) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return