Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Sun Jian, Xu Ya, Chen Fangxi, Peng Zhongren. Research on offshore petroleum oil spilling detection using SAR echo signal[J]. Haiyang Xuebao, 2014, 36(9): 103-105. doi: 10.3969.issn.0253-4193.2014.09.012
Citation: Sun Jian, Xu Ya, Chen Fangxi, Peng Zhongren. Research on offshore petroleum oil spilling detection using SAR echo signal[J]. Haiyang Xuebao, 2014, 36(9): 103-105. doi: 10.3969.issn.0253-4193.2014.09.012

Research on offshore petroleum oil spilling detection using SAR echo signal

doi: 10.3969.issn.0253-4193.2014.09.012
  • Received Date: 2013-09-13
  • Rev Recd Date: 2013-11-26
  • Oil spilling is one of the major sources for in marine pollutions,which are widely distributed and can bring cause terrible significant environmental damages. In recent years,due to the increase in offshore human activities and development of petroleum processing industries,oil spill accidents are also increasing,which are mostly caused by well blowouts,explosions of drilling platforms and ship collisions. Therefore,monitoring oil spilling has important significance in both economical and social aspects. As an all-weather high-resolution active microwave imaging sensor,Synthetic Aperture Radar (SAR) can greatly improve the resolution of images and the accuracy of forecasts,and thus takes an important role in oil spill monitoring. This paper aims to realize the semi-automatic identification of various targets on SAR images. We have conducted a convincing contrast of different neural networks,using Matlab as the tool through image preprocessing (image correction and enhancement),feature extraction and neural network recognition. First,oil spilli images are preliminarily manually identified,followed by image preprocessing (such as geometric correction,filtering,etc.) and feature extraction based on gray level co-occurrence matrix. Then,two types of neural networks,namely RBF and BP ,are introduced to classify the oil spill area and other suspected areas. Finally,the processed images are analyzed,indicating the capability in classifying oil,sea water,and land targets. The results reveal that the outputs from the RBF neural network are more accurate compared to those from the BP neural network.

  • loading
  • 刘彦呈,任光,殷佩海. 海上溢油应急反应基于GIS的模拟训练系统研究[J]. 系统仿真学报,2005,16(11): 2445-2450.
    熊文成,吴传庆,魏斌,等. SAR图像在韩国溢油监测中的应用[J]. 遥感技术与应用,2008,23(4): 410-413.
    安居白. 航空遥感探测海上溢油的技术[J]. 交通环保,2002,23(1): 24-26.
    石立坚. SAR及MODIS数据海面溢油监测方法研究. 青岛: 中国海洋大学,2008.
    马腾波,王思远. 基于边缘分析的海面溢油检测[J]. 遥感学报,2009,13(6): 1087-1091.
    邹亚荣,梁超,陈江麟,等. 基于SAR的海上溢油监测最佳探测参数分析[J]. 海洋学报,2011,33(1): 36-44.
    刘朋,赵朝方,石立坚. 基于SAR图像组合特征的海面溢油识别// 第六届全国信息获取与处理学术会议论文集,2008.
    马广文,赵朝方,石立坚. 星载SAR监测海洋溢油污染的初步研究[J]. 海洋湖沼通报,2008(2): 53-60.
    石立坚,赵朝方,刘朋. 基于纹理分析和人工神经网络的SAR图像中海面溢油识别方法[J]. 中国海洋大学学报,2009,39(6): 1269-1274.
    杨永生,张宗杰. 一种适合于大面积的SAR海面溢油图像分割方法[J]. 海洋环境科学,2010,29(6): 914-916.
    梁小祎,张杰,孟俊敏. 溢油 SAR 图像分类中的纹理特征选择[J]. 海洋科学进展,2007,25(3): 346-354.
    Solberg A H S,Brekke C. Oil spill detection in northern European waters: Approaches and algorithms[M]// Barale V,Gade M. Remote Sensing of the European Seas. Netherlands: Springer,2008: 359-370.
    Salberg A B,Rudjord O,Solberg A H S. Model based oil spill detection using polarimetric SAR// IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Munich: IEEE,2012: 5884-5887.
    Solberg A H S,Volden E. Incorporation of prior knowledge in automatic classification of oil spills in ERS SAR images// IEEE International Geoscience and Remote Sensing Symposium (IGARSS),1997: 157-159.
    Lu C S,Chung P C,Chen C F. Unsupervised texture segmentation via wavelet transform[J]. Pattern Recognition,1997,30(5): 729-742.
    Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE,1979,67(5): 786-804.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1428) PDF downloads(1420) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return