Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhang Xu, Cheng Chen, Liu Yan. Acoustic propagation effect caused by subtropical mode water of northwestern Pacific[J]. Haiyang Xuebao, 2014, 36(9): 94-102. doi: 10.3969.issn.0253-4193.2014.09.011
Citation: Zhang Xu, Cheng Chen, Liu Yan. Acoustic propagation effect caused by subtropical mode water of northwestern Pacific[J]. Haiyang Xuebao, 2014, 36(9): 94-102. doi: 10.3969.issn.0253-4193.2014.09.011

Acoustic propagation effect caused by subtropical mode water of northwestern Pacific

doi: 10.3969.issn.0253-4193.2014.09.011
  • Received Date: 2013-06-15
  • Rev Recd Date: 2013-12-14
  • Acoustical propagation features caused by subtropical mode water (STMW) of Northwestern Pacific during seasonal transition are analyzed by Argo profile data and acoustic numerical model. The results of sound filed show that the main propagating pattern of STMW formed region is a combination of surface or subsurface duct and convergence zone (CZ). The CZ exists all the year round, but the surface duct appears in a growing mixed-layer environment in autumn and winter, and the subsurface duct appears only in a STMW subduction environment in summer. Two types of duct propagation show an inverse pattern of sound energy distribution, and the difference can be around 10 to 15 dB between the internal and the external of the duct (sound frequency is 1 kHz). Seasonal transition of STMW can also lead to the change of CZ positions. The changes are influenced by the source depth. When the source locates at 20 m, the CZ position reaches its furthest in the summer, remains medium in the spring, and arrives its nearest in the winter, where the maximum difference can be 6.6 km. When the source locates at 150 m, the CZ reduces 3.1 km in summer and shows no distinct changes in other seasons.
  • loading
  • Suga T, Hanawa K. The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of subtropical mode water[J]. J Mar Res, 1990, 48(3): 543-566.
    Bingham F M, Suga T. Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and World Ocean Atlas 2001[J]. Ocean Sci, 2006, 2(1): 61-70.
    Ohno Y, Iwasaka N, Kobashi F, et al. Mixed layer depth climatology of the North Pacific based on Argo observations[J]. J Oceanogr, 2009, 65(1): 1-16.
    张旭, 张永刚, 张胜军, 等. 菲律宾海温跃层的区域性特征及其季节性变化[J]. 海洋通报, 2009, 28(4): 17-26.
    Munk W H, Forbes A M G. Global ocean warmin: an acoustic measure[J]. J Phys Oceanogr, 1989, 19: 1765-1778.
    孙琪田, 张恩夫, 韩军. 西北太平洋深海声道的初步分析[J]. 海洋学报, 1995, 17(3): 110-117.
    张旭, 张永刚, 张胜军, 等. 菲律宾海的声速剖面结构特征及季节性变化[J]. 热带海洋学报, 2009, 28(6): 23-34.
    Henrick R F, Seigmann W L, Jacobson M J. General analysis of ocean eddy effects for sound transmission applications[J]. J Acoust Soc Am, 1977, 62(4): 860-870.
    Henrick R F, Burkom H S. The effect of range dependence on acoustic propagation in a convergence zone environment[J]. J Acoust Soc Am, 1983, 73(1): 173-182.
    菅永军, 张杰, 贾永君. 海洋锋区的一种声速计算模式及其在声传播影响研究中的应用[J]. 海洋科学进展, 2006, 24(2): 166-172.
    张旭, 张健雪, 张永刚, 等. 南海西部中尺度暖涡环境下汇聚区声传播效应分析[J]. 海洋工程, 2011, 29(2): 83-91.
    Masuzawa J. Subtropical mode water[J]. Deep-Sea Res, 1969, 16: 463-472.
    Bingham F M. Formation and spreading of subtropical mode water in the North Pacific[J]. J Geophys Res, 1992, 97(C7): 11177-11189.
    Suga T, Hanawa K. The subtropical mode water circulation in the North Pacific[J]. J Phys Oceanogr, 1995, 25: 958-970.
    黄瑞新. 大洋环流: 风生与热盐过程[M]. 乐肯堂, 史久新,译. 北京: 高等教育出版社, 2012.
    Qiu B, Chen S. Decadal variability in the formation of the North Pacific subtropical mode water: oceanic versus atmospheric control[J]. J Phys Oceanogr, 2006, 36(7): 1365-1380.
    Liu Q, Hu H. A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island[J]. Geophys Res Lett, 2007, 34: L12710.
    Oka E, Toyama K, Suga T. Subduction of North Pacific central mode water associated with subsurface mesoscale eddy[J]. Geophys Res Lett, 2009, 36: L08607.
    Hanawa K, Talley L D. Mode waters[M]// Siedler G, Church J, Gould J. Ocean Circulation and Climate. London: Academic Press, 2001: 373-386.
    Oka E, Qiu B. Progress of North Pacific mode water research in the past decade[J]. J Oceanogr, 2012, 68(1): 5-20.
    Operational Oceanography Group: Global Argo Data Repository. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Oceanographic Data Center, Silver Spring, Maryland, 20910. Date of Access, 2007. http://www.nodc.noaa.gov/argo
    The Argo Science Team. Report of the Argo Science Team 2nd Meeting (AST-2). 2000:1-18.
    Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2009 Volume 1: Temperature. NOAA Atlas NESDIS 68, US Government Printing Office, Washington DC, 2010.
    Antonov J I, Seidov D, Boyer T P, et al. World Ocean Atlas 2009 Volume 2: Salinity. NOAA Atlas NESDIS 69, US Government Printing Office, Washington DC, 2010.
    Mackenzie K V. Nine term equation for sound speed in the oceans[J]. J Acoust Soc Am, 1981, 70(3): 807-812.
    Porter M B, Bucher H P. Gaussian beam tracing for computing ocean acoustic fields[J]. J Acoust Soc Am, 1987, 82(4): 1349-1359.
    Bucker H P. A simple 3-D Gaussian beam sound propagation model for shallow water[J]. J Acoust Soc Am, 1994, 95(5): 2437-2440.
    Weinberg H, Keenan R E. Gaussian ray bundles for modeling high-frequency propagation loss under shallow-water conditions[J]. J Acoust Soc Am, 1996, 100(3): 1421-1996.
    Bongiovanni K P, Siegmann W L. Convergence zone feature dependence on ocean temperature structure[J]. J Acoust Soc Am, 1996, 100(5): 3033-3041.
    张旭, 张永刚, 董楠, 等. 声跃层结构变化对深海汇聚区声传播的影响[J]. 台湾海峡, 2011, 30(1): 114-121.
    Fitzgerald R M, Guthrie A N, Nutile D A, et al. Influence of the subsurface sound channel on long-range propagation paths and travel times[J]. J Acoust Soc Am, 1974, 55: 47-53.
    Dosso S E, Chapman N R. Acoustic propagation in a shallow sound channel in the Northeast Pacific Ocean[J]. J Acoust Soc Am, 1984, 75: 413-418.
    Ladd C, Thompson L. Formation mechanisms for North Pacific central and eastern subtropical mode waters[J]. J Phys Oceanogr, 2000, 30: 868-887.
    Qiu B, Huang R X. Ventilation of the North Atlantic and North Pacific: subduction versus obduction[J]. J Phys Oceanogr, 1995, 25(10): 2374-2390.
    Joyce T M. New perspectives on Eighteen Degree Water formation in the North Atlantic[J]. J Oceanogr, 2012, 68(1): 45-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1484) PDF downloads(907) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return