Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
Bu Xianhai,Tan Xinyue,Zhang Jianxing, et al. Development of a high-precision deep-sea seabed terrain model through frequency domain weighted fusion of multi-source data: A case study in the southern waters of greenland[J]. Haiyang Xuebao,2025, 47(8):101–115 doi: 10.12284/hyxb2025081
Citation: Bu Xianhai,Tan Xinyue,Zhang Jianxing, et al. Development of a high-precision deep-sea seabed terrain model through frequency domain weighted fusion of multi-source data: A case study in the southern waters of greenland[J]. Haiyang Xuebao,2025, 47(8):101–115 doi: 10.12284/hyxb2025081

Development of a high-precision deep-sea seabed terrain model through frequency domain weighted fusion of multi-source data: A case study in the southern waters of greenland

doi: 10.12284/hyxb2025081
  • Received Date: 2025-04-10
  • Rev Recd Date: 2025-07-17
  • Available Online: 2025-07-31
  • Publish Date: 2025-08-31
  • The fusion of multi-source data, such as satellite gravity inversion and shipboard sonar bathymetry, is the core technology for constructing large-scale high-precision deep-sea topographic models. However, existing methods are usually difficult to consider the local topographic details and global trends, so this paper proposes a method for constructing a high-precision seafloor topographic model of the deep sea based on the weighted fusion of multi-source data in the frequency domain. First, data format conversion, data cleaning and datum unification are performed on the multi-source data; then, the six global terrain models corresponding to the survey area are processed by frequency division and weighted fusion, and the fusion weights are iteratively optimized to obtain the initial fusion results with the constraints of the bathymetric deviation of the local ship’s measured terrain and the fused model; finally, the local terrain details are constructed by combining the local ship’s measured terrain and the initial fusion results, so as to realize the construction of a high-accuracy seabed topographic model over a wide range of survey areas. A case study in the southern part of Greenland Island was presented, and the results showed that the root-mean-square error (RMSE) of the seafloor topography model constructed by the proposed method significantly decreased, with RMSE 17.15%, 16.50%, 16.63%, 16.67%, and 9.99% lower than that of the nearest-neighbor interpolation, inverse-distance-weighted, natural-neighbor interpolation, kriging interpolation methods, and the remove-and-recovery method, respectively. The improvement in the coefficient of determination R2 with the IBCAO5.0 model was about 8.82%, 8.27%, 8.27%, 8.41% and 16.09%, respectively, and the information of the overall trend of the terrain and the local details are effectively guaranteed.
  • loading
  • [1]
    吴园涛, 段晓男, 沈刚, 等. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039

    Wu Yuantao, Duan Xiaonan, Shen Gang, et al. Thoughts and suggestions on strengthening the national strategic scientific and technological forces in the marine field of China[J]. Advances in Earth Science, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039
    [2]
    吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017.

    Wu Ziyin, Yang Fanlin, Li Shoujun, et al. High Resolution Submarine Geomorphology[M]. Beijing: Science Press, 2017.
    [3]
    阳凡林, 沈瑞杰, 梅赛, 等. 联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形[J]. 海洋学报, 2022, 44(12): 126−135.

    Yang Fanlin, Shen Ruijie, Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao, 2022, 44(12): 126−135.
    [4]
    Amoroso P P, Aguilar F J, Parente C, et al. Statistical assessment of some interpolation methods for building grid format digital bathymetric models[J]. Remote Sensing, 2023, 15(8): 2072. doi: 10.3390/rs15082072
    [5]
    Lambev T, Prodanov B, Dimitrov L, et al. Digital bathymetric model of the Burgas Bay, Bulgarian Black Sea[C]//Proceedings of SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment. Paphos: SPIE, 2020: 1152421.
    [6]
    Mayer L, Jakobsson M, Allen G, et al. The Nippon foundation—GEBCO seabed 2030 project: the quest to see the world’s oceans completely mapped by 2030[J]. Geosciences, 2018, 8(2): 63. doi: 10.3390/geosciences8020063
    [7]
    Niyazi Y, Thomas E A, Pucino N, et al. Status of global seafloor mapping effort and priority areas for future mapping[J]. Frontiers in Marine Science, 2025, 12: 1543885. doi: 10.3389/fmars.2025.1543885
    [8]
    Tozer B, Sandwell D T, Smith W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847−1864. doi: 10.1029/2019EA000658
    [9]
    Jakobsson M, Mohammad R, Karlsson M, et al. The international bathymetric chart of the arctic ocean version 5.0[J]. Scientific Data, 2024, 11(1): 1420. doi: 10.1038/s41597-024-04278-w
    [10]
    Dorschel B, Hehemann L, Viquerat S, et al. The international bathymetric chart of the southern ocean version 2[J]. Scientific Data, 2022, 9(1): 275. doi: 10.1038/s41597-022-01366-7
    [11]
    Jakobsson M, Mayer L A, Bringensparr C, et al. The international bathymetric chart of the arctic ocean version 4.0[J]. Scientific Data, 2020, 7(1): 176. doi: 10.1038/s41597-020-0520-9
    [12]
    Fan Diao, Li Shanshan, Feng Jinkai, et al. A new global bathymetry model: STO_IEU2020[J]. Remote Sensing, 2022, 14(22): 5744. doi: 10.3390/rs14225744
    [13]
    Smith W H F, Wessel P. Gridding with continuous curvature splines in tension[J]. Geophysics, 1990, 55(3): 293−305. doi: 10.1190/1.1442837
    [14]
    Shepard D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 1968 23rd ACM National Conference. ACM, 1968: 517−524.
    [15]
    Oliver M A, Webster R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313−332. doi: 10.1080/02693799008941549
    [16]
    Lloyd C D, Atkinson P M. Deriving DSMs from LiDAR data with kriging[J]. International Journal of Remote Sensing, 2002, 23(12): 2519−2524. doi: 10.1080/01431160110097998
    [17]
    Šiljeg A, Lozić S, Šiljeg S. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia[J]. Hydrology and Earth System Sciences, 2015, 19(8): 3653−3666. doi: 10.5194/hess-19-3653-2015
    [18]
    Bäckström A. A new digital bathymetric model of Lake Vättern, Southern Sweden[D]. Stockholm: Stockholm University, 2018.
    [19]
    王可伟, 高利华, 江锋. 基于改进反距离加权算法的海底DEM建模方法[J]. 海洋测绘, 2021, 41(1): 61−64. doi: 10.3969/j.issn.1671-3044.2021.01.013

    Wang Kewei, Gao Lihua, Jiang Feng. A method of seabed DEM modeling based on the improved inverse distance weighted interpolation algorithm[J]. Hydrographic Surveying and Charting, 2021, 41(1): 61−64. doi: 10.3969/j.issn.1671-3044.2021.01.013
    [20]
    Jakobsson M, Mayer L, Coakley B, et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0[J]. Geophysical Research Letters, 2012, 39(12): L12609.
    [21]
    Arndt J E, Schenke H W, Jakobsson M, et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum-Antarctic waters[J]. Geophysical Research Letters, 2013, 40(12): 3111−3117. doi: 10.1002/grl.50413
    [22]
    Weatherall P, Marks K M, Jakobsson M, et al. A new digital bathymetric model of the world’s oceans[J]. Earth and Space Science, 2015, 2(8): 331−345. doi: 10.1002/2015EA000107
    [23]
    樊妙, 孙毅, 邢喆, 等. 基于多源水深数据融合的海底高精度地形重建[J]. 海洋学报, 2017, 39(1): 130−137. doi: 10.3969/j.issn.0253-4193.2017.01.014

    Fan Miao, Sun Yi, Xing Zhe, et al. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130−137. doi: 10.3969/j.issn.0253-4193.2017.01.014
    [24]
    徐泽, 高金耀, 杨春国, 等. 南极罗斯海高分辨率数字水深模型[J]. 极地研究, 2018, 30(4): 360−369.

    Xu Ze, Gao Jinyao, Yang Chunguo, et al. A new high-resolution digital bathymetric model of the ross sea, Antarctica[J]. Chinese Journal of Polar Research, 2018, 30(4): 360−369.
    [25]
    程建华, 黄孟远, 葛靖宇, 等. 基于改进“移去−恢复”算法的海底地形构建方法研究[J]. 地球信息科学学报, 2021, 23(3): 377−384. doi: 10.12082/dqxxkx.2021.200255

    Cheng Jianhua, Huang Mengyuan, Ge Jingyu, et al. Research on construction method of seabed topography based on improved “remove-restore” algorithm[J]. Journal of Geo-Information Science, 2021, 23(3): 377−384. doi: 10.12082/dqxxkx.2021.200255
    [26]
    Liu Yang, Wu Ziyin, Zhao Dineng, et al. Construction of high-resolution bathymetric dataset for the Mariana trench[J]. IEEE Access, 2019, 7: 142441−142450. doi: 10.1109/ACCESS.2019.2944667
    [27]
    Smith W H F, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334): 1956−1962. doi: 10.1126/science.277.5334.1956
    [28]
    Sandwell D T, Smith W H F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10039−10054. doi: 10.1029/96JB03223
    [29]
    熊桂芳, 王波, 朱长德, 等. 基于多源数据融合的澎湖水道数字水深模型构建[J]. 海洋科学进展, 2024, 42(1): 149−159. doi: 10.12362/j.issn.1671-6647.20220606002

    Xiong Guifang, Wang Bo, Zhu Changde, et al. Construction of Penghu channel digital bathymetric model based on multisource data fusion[J]. Advances in Marine Science, 2024, 42(1): 149−159. doi: 10.12362/j.issn.1671-6647.20220606002
    [30]
    Ruan Xiaoguang, Cheng Liang, Chu Sensen, et al. A new digital bathymetric model of the South China Sea based on the subregional fusion of seven global seafloor topography products[J]. Geomorphology, 2020, 370: 107403. doi: 10.1016/j.geomorph.2020.107403
    [31]
    阮晓光, 占赵杰, 闫兆进, 等. 基于全球测深数据的中国海岸线周边海域数字水深模型融合[J]. 海洋学报, 2024, 46(7): 16−28. doi: 10.12284/hyxb2024062

    Ruan Xiaoguang, Zhan Zhaojie, Yan Zhaojin, et al. Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data[J]. Haiyang Xuebao, 2024, 46(7): 16−28. doi: 10.12284/hyxb2024062
    [32]
    Chen Zhaoyu, Liu Qiankun, Xu Ke, et al. Weighted fusion method of marine gravity field model based on water depth segmentation[J]. Remote Sensing, 2024, 16(21): 4107. doi: 10.3390/rs16214107
    [33]
    赵建虎, 张红梅, 严俊, 等. 削弱残余误差对多波束测深综合影响的方法研究[J]. 武汉大学学报(信息科学版), 2013, 38(10): 1184−1187.

    Zhao Jianhu, Zhang Hongmei, Yan Jun, et al. Weakening influence of residual error for MBS sounding[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1184−1187.
    [34]
    周平. 多波束测深条带拼接区误差处理方法研究[D]. 南昌: 东华理工大学, 2017.

    Zhou Ping. Research on error processing methods in multi-beam sounding swath joins[D]. Nanchang: East China University of Technology, 2017.
    [35]
    马伟鹏, 杨海忠, 孙建伟. 基于地形频谱分析提高多波束条带拼接效果应用[J]. 海洋地质前沿, 2018, 34(8): 68−72.

    Ma Weipeng, Yang Haizhong, Sun Jianwei. Improvement of multi-beam stripe splicing effect based on topographic spectrum analysis[J]. Marine Geology Frontiers, 2018, 34(8): 68−72.
    [36]
    孙亮, 严薇, 刘平芝, 等. 采用小波分析的SRTM DEM与ASTER DEM数据融合[J]. 测绘科学技术学报, 2014, 31(4): 388−392. doi: 10.3969/j.issn.1673-6338.2014.04.013

    Sun Liang, Yan Wei, Liu Pingzhi, et al. Data fusion of SRTM DEM and ASTER DEM based on wavelet analysis[J]. Journal of Geomatics Science and Technology, 2014, 31(4): 388−392. doi: 10.3969/j.issn.1673-6338.2014.04.013
    [37]
    Tian Yu, Lei Shaogang, Bian Zhengfu, et al. Improving the accuracy of open source digital elevation models with multi-scale fusion and a slope position-based linear regression method[J]. Remote Sensing, 2018, 10(12): 1861. doi: 10.3390/rs10121861
    [38]
    Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: NOAA, 2009.
    [39]
    MacFerrin M, Amante C, Carignan K, et al. The earth topography 2022 (ETOPO 2022) global DEM dataset[J]. Earth System Science Data, 2025, 17(4): 1835–1849.
    [40]
    Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4): 355−371. doi: 10.1080/01490410903297766
    [41]
    Andersen O B, Knudsen P. The DTU17 global marine gravity field: first validation results[M]//Mertikas S P, Pail R. Fiducial Reference Measurements for Altimetry: Proceedings of the International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications. Cham: Springer, 2019: 83−87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views (83) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return