Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
Liu Jingui,Li Shuo,Li Yichun, et al. A study on tidal asymmetry in the Zhujiang River Estuary[J]. Haiyang Xuebao,2025, 47(8):26–34 doi: 10.12284/hyxb2025079
Citation: Liu Jingui,Li Shuo,Li Yichun, et al. A study on tidal asymmetry in the Zhujiang River Estuary[J]. Haiyang Xuebao,2025, 47(8):26–34 doi: 10.12284/hyxb2025079

A study on tidal asymmetry in the Zhujiang River Estuary

doi: 10.12284/hyxb2025079
  • Received Date: 2025-03-24
  • Rev Recd Date: 2025-07-01
  • Publish Date: 2025-08-31
  • The Zhujiang River Estuary, a typical subtropical large-scale estuary, exhibits significant interactions between diurnal and semi-diurnal tides. Under the combined impacts of global climate change and intensive human activities, its tidal dynamics system has undergone notable variations. This study focuses on the nonlinear coupling mechanisms between diurnal tides (K1, O1) and semi-diurnal tides (M2, S2), developing an integrated evaluation framework that combines constituent amplitude ratios, relative phase analysis, and skewness method. This approach systematically reveals the spatiotemporal characteristics and driving mechanisms of barotropic tidal deformation in the Pearl River Estuary. The results include: (1) Tidal asymmetry transitions from ebb dominance at the estuary mouth to flood dominance at the upper estuary, with the controlling mechanism shifting from astronomical constituent interactions (O1/K1/M2) in the outer estuary to synergistic effects of semi-diurnal constituents (S2, M2) and shallow-water constituents (M4, MS4) in the upper reaches; (2) From 2010 to 2020, upstream constituents exhibited amplitude attenuation and phase increases, leading to a reversal from flood-to-ebb dominated asymmetry. Negative asymmetry induced by astronomical constituent interactions intensified, while the contribution of high-frequency constituents decreased; (3) In offshore areas, ebb-dominated asymmetry weakened, with emerging positive asymmetry driven by interactions between astronomical and shallow-water constituents; (4) The tidal dynamics system of the Pearl River Estuary has undergone significant long-term adaptive adjustments. Due to the combined influences of large-scale infrastructure construction, water resource allocation projects, and sea level rise, coastline and terrain both occur significant changes, which further has driven middle-to-long term adjustment of tidal dynamics. This study provides a novel analytical framework for understanding tidal system evolution under multi-scale perturbations and offers crucial insights for integrated estuarine management.
  • loading
  • [1]
    Friedrichs C T, Aubrey D G. Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis[J]. Estuarine, Coastal and Shelf Science, 1988, 27(5): 521−545. doi: 10.1016/0272-7714(88)90082-0
    [2]
    Prandle D. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries[J]. Journal of Physical Oceanography, 2003, 33(12): 2738−2750. doi: 10.1175/1520-0485(2003)033<2738:RBTDAB>2.0.CO;2
    [3]
    李谊纯, 徐群. 瓯江口内外潮汐不对称研究[J]. 水利水运工程学报, 2013(5): 61−65. doi: 10.3969/j.issn.1009-640X.2013.05.009

    Li Yichun, Xu Qun. A study of tidal asymmetry in Oujiang estuary[J]. Hydro-Science and Engineering, 2013(5): 61−65. doi: 10.3969/j.issn.1009-640X.2013.05.009
    [4]
    李谊纯, 李庆, 林振良. 正规半日潮海域潮汐不对称性及量化[J]. 海洋工程, 2019, 37(6): 86−93.

    Li Yichun, Li Qing, Lin Zhenliang. Tidal asymmetry and its quantification in regular semidiurnal tide zones[J]. The Ocean Engineering, 2019, 37(6): 86−93.
    [5]
    Wang Z B, Jeuken C, De Vriend H J. Tidal asymmetry and residual sediment transport in estuaries[R/OL]. https://www.researchgate.net/publication/236846938_Tidal_asymmetry_and_residual_sediment_transport_in_estuaries.
    [6]
    Li Zhanhai, Jia Jianjun, Wang Yaping, et al. Net suspended sediment transport modulated by multiple flood-ebb asymmetries in the progressive tidal wave dominated and partially stratified Changjiang Estuary[J]. Marine Geology, 2022, 443: 106702. doi: 10.1016/j.margeo.2021.106702
    [7]
    乔立新, 张国安, 何青, 等. 长江分汊河口涨、落潮悬沙不对称特征及季节性差异[J]. 海洋学报, 2020, 42(3): 107−117. doi: 10.3969/j.issn.0253-4193.2020.03.010

    Qiao Lixin, Zhang Guoan, He Qing, et al. Tidal and seasonal asymmetry of suspended sediment concentration in branched channels of the Changjiang River Estuary[J]. Haiyang Xuebao, 2020, 42(3): 107−117. doi: 10.3969/j.issn.0253-4193.2020.03.010
    [8]
    Jewell S A, Walker D J, Fortunato A B. Tidal asymmetry in a coastal lagoon subject to a mixed tidal regime[J]. Geomorphology, 2012, 138(1): 171−180. doi: 10.1016/j.geomorph.2011.08.032
    [9]
    Du Jiabi, Shen Jian, Zhang Yinglong, et al. Tidal response to sea-level rise in different types of estuaries: the importance of length, bathymetry, and geometry[J]. Geophysical Research Letters, 2018, 45(1): 227−235. doi: 10.1002/2017GL075963
    [10]
    Huang Haosheng, Chen Changsheng, Blanton J O, et al. A numerical study of tidal asymmetry in Okatee Creek, South Carolina[J]. Estuarine, Coastal and Shelf Science, 2008, 78(1): 190−202. doi: 10.1016/j.ecss.2007.11.027
    [11]
    Nidzieko N J. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08006.
    [12]
    Manoj N T, Unnikrishnan A S, Sundar D. Tidal asymmetry in the Mandovi and Zuari Estuaries, the West Coast of India[J]. Journal of Coastal Research, 2009, 256(6): 1187−1197.
    [13]
    Song Dehai, Wang Xiaohua, Kiss A E, et al. The contribution to tidal asymmetry by different combinations of tidal constituents[J]. Journal of Geophysical Research Atmospheres, 2011, 116(C12): C12007. doi: 10.1029/2011JC007270
    [14]
    李谊纯, 董德信, 王一兵. 防城港湾潮余流及潮汐不对称特征[J]. 广东海洋大学学报, 2021, 41(4): 50−57. doi: 10.3969/j.issn.1673-9159.2021.04.006

    Li Yichun, Dong Dexin, Wang Yibing. Characteristics of tidal residual current and tidal asymmetry in Fangchenggang Gulf[J]. Journal of Guangdong Ocean University, 2021, 41(4): 50−57. doi: 10.3969/j.issn.1673-9159.2021.04.006
    [15]
    Mao Qingwen, Shi Ping, Yin Kedong, et al. Tides and tidal currents in the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24(16): 1797−1808. doi: 10.1016/j.csr.2004.06.008
    [16]
    Cai Huayang, Yang Qingshu, Zhang Zihao, et al. Impact of river-tide dynamics on the temporal-spatial distribution of residual water level in the Pearl River channel networks[J]. Estuaries and Coasts, 2018, 41(7): 1885−1903. doi: 10.1007/s12237-018-0399-2
    [17]
    Zhang Wei, Cao Yu, Zhu Yuliang, et al. Unravelling the causes of tidal asymmetry in deltas[J]. Journal of Hydrology, 2018, 564: 588−604. doi: 10.1016/j.jhydrol.2018.07.023
    [18]
    童朝锋, 司家林, 张蔚, 等. 伶仃洋洪季潮波传播变形及不对称性规律分析[J]. 热带海洋学报, 2020, 39(1): 36−52.

    Tong Chaofeng, Si Jialin, Zhang Wei, et al. Analysis of tidal wave propagation distortion and asymmetry in Lingding Bay during wet season[J]. Journal of Tropical Oceanography, 2020, 39(1): 36−52.
    [19]
    许炜铭, 包芸. 重大工程引起的珠江河口潮波逆向不稳定传播现象[J]. 计算力学学报, 2011, 28(S1): 208−214.

    Xu Weiming, Bao Yun. Unsteady reverse transmission of tide wave by huge human activity in the estuary of Pearl River[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1): 208−214.
    [20]
    Wu Z Y, Saito Y, Zhao D N, et al. Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River estuary, China, during 1955−2013[J]. Scientific Reports, 2016, 6(1): 37742 doi: 10.1038/srep37742
    [21]
    Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929−937.
    [22]
    Jay D A, Leffler K, Diefenderfer H L, et al. Tidal-fluvial and estuarine processes in the lower Columbia River: I. Along-channel water level variations, Pacific Ocean to Bonneville Dam[J]. Estuaries and Coasts, 2015, 38(2): 415−433. doi: 10.1007/s12237-014-9819-0
    [23]
    Garel E, Zhang Ping, Cai Huayang. Dynamics of fortnightly water level variations along a tide-dominated estuary with negligible river discharge[J]. Ocean Science, 2021, 17(6): 1605−1621. doi: 10.5194/os-17-1605-2021
    [24]
    Blanton J O, Lin Guoqing, Elston S A. Tidal current asymmetry in shallow estuaries and tidal creeks[J]. Continental Shelf Research, 2002, 22(11/13): 1731−1743.
    [25]
    Leuven J R F W, Pierik H J, Van Der Vegt M, et al. Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide[J]. Nature Climate Change, 2019, 9(12): 986−992. doi: 10.1038/s41558-019-0608-4
    [26]
    章卫胜, 张金善, 林瑞栋, 等. 中国近海潮汐变化对外海海平面上升的响应[J]. 水科学进展, 2013, 24(2): 243−250.

    Zhang Weisheng, Zhang Jinshan, Lin Ruidong, et al. Tidal response of sea level rise in marginal seas near China[J]. Advances in Water Science, 2013, 24(2): 243−250.
    [27]
    Yang Qingshu, Hu Shuai, Fu Linxi, et al. Responses of tidal duration asymmetry to morphological changes in Lingding Bay of the Pearl River Estuary[J]. Frontiers in Marine Science, 2022, 9: 983182. doi: 10.3389/fmars.2022.983182
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article views (29) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return