Citation: | Zheng Jia-Lang,Chen Tian-Hong,Chen Yong-Long, et al. Composition and seasonal variations of water quality and phytoplankton volatile organic compounds in different aquaculture zones of large yellow croaker net cages[J]. Haiyang Xuebao,2025, 47(7):1–10 doi: 10.12284/hyxb2025074 |
[1] |
Meng Yuqiong, Ma Rui, Shentu Jikang. Comparative studies on the quality of wild and formulated diet-fed large yellow croaker (Larimichthys crocea)[J]. Periodical of Ocean University of China, 2016, 46(11): 108−116.
|
[2] |
Yuan Jigui, Lin H, Wu Lisheng, et al. Resource status and effect of long-term stock enhancement of large yellow croaker in China[J]. Frontiers in Marine Science, 2021, 8: 743836. doi: 10.3389/fmars.2021.743836
|
[3] |
Li Yan, Ai Qinghui, Mai Kangsen, et al. Dietary leucine requirement for juvenile large yellow croaker Pseudosciaena crocea (Richardson, 1846)[J]. Journal of Ocean University of China, 2010, 9(4): 371−375. doi: 10.1007/s11802-010-1770-5
|
[4] |
Feng Yangyu, Hou Lichun, Ping Niexiang, et al. Development of mariculture and its impacts in Chinese coastal waters[J]. Reviews in Fish Biology and Fisheries, 2004, 14(1): 1−10. doi: 10.1007/s11160-004-3539-7
|
[5] |
Long Lina, Liu Huang, Cui Mingchao, et al. Offshore aquaculture in China[J]. Reviews in Aquaculture, 2024, 16(1): 254−270. doi: 10.1111/raq.12837
|
[6] |
Zheng Jialang, Chen Yonglong, Wan Faguo, et al. Comparative study on the quality of wild and ecologically farmed large yellow croaker through on-site synchronous sampling from the Nanji Archipelago in the East China Sea[J]. Aquaculture, 2024, 591: 741098. doi: 10.1016/j.aquaculture.2024.741098
|
[7] |
Zheng Jialang, Wan Faguo, Chen Yonglong, et al. Comparative study on the morphological characteristics, nutritional quality, and tastes of large yellow croaker from five cage culture areas: Relay farming improved fish quality[J]. Aquaculture, 2024, 590: 741030. doi: 10.1016/j.aquaculture.2024.741030
|
[8] |
林永添. 三都湾大黄鱼网箱养殖区海水营养盐状况的初步研究[J]. 福建水产, 2013, 35(3): 211−217.
Li Yongtian. A preliminary study of nutrients distribution in Pseudosciaena crocea net-cage culture area of Sandu Bay[J]. Journal of Fujian Fisheries, 2013, 35(3): 211−217.
|
[9] |
陈华伟, 吴卫飞. 象山港内新增网箱养殖污染物对海水水质的影响预测[J]. 渔业研究, 2021, 43(2): 183−192.
Chen Huawei, Wu Weifei. Prediction of the influence of new cage culture pollutants on the seawater quality in Xiangshan Harbor[J]. Journal of Fisheries Research, 2021, 43(2): 183−192.
|
[10] |
Boyd C E, Tucker C S, Viriyatum R. Interpretation of pH, acidity, and alkalinity in aquaculture and fisheries[J]. North American Journal of Aquaculture, 2011, 73(4): 403−408. doi: 10.1080/15222055.2011.620861
|
[11] |
Hlordzi V, Kuebutornye F K A, Afriyie G, et al. The use of Bacillus species in maintenance of water quality in aquaculture: a review[J]. Aquaculture Reports, 2020, 18: 100503. doi: 10.1016/j.aqrep.2020.100503
|
[12] |
Cengiz N, Guclu G, Kelebek H, et al. Characterization of volatile compounds in the water samples from rainbow trout aquaculture ponds eliciting off-odors: understanding locational and seasonal effects[J]. Environmental Science and Pollution Research, 2024, 31(52): 61819−61834. doi: 10.1007/s11356-024-35370-8
|
[13] |
Zuo Zhaojiang. Emission of cyanobacterial volatile organic compounds and their roles in blooms[J]. Frontiers in Microbiology, 2023, 14: 1097712. doi: 10.3389/fmicb.2023.1097712
|
[14] |
Olsen E, Nielsen F. Predicting vapour pressures of organic compounds from their chemical structure for classification according to the VOC directive and risk assessment in general[J]. Molecules, 2001, 6(4): 370−389. doi: 10.3390/60400370
|
[15] |
Amann A, De Lacy Costello B, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. Journal of Breath Research, 2014, 8(3): 034001. doi: 10.1088/1752-7155/8/3/034001
|
[16] |
Pickett J A, Khan Z R. Plant volatile‐mediated signalling and its application in agriculture: successes and challenges[J]. New Phytologist, 2016, 212(4): 856−870. doi: 10.1111/nph.14274
|
[17] |
Redeker K R, Cai L L, Dumbrell A J, et al. Chapter Four-Noninvasive analysis of the soil microbiome: biomonitoring strategies using the volatilome, community analysis, and environmental data[J]. Advances in Ecological Research, 2018, 59: 93−132.
|
[18] |
Steinke M, Randell L, Dumbrell A J, et al. Chapter Three-Volatile biomarkers for aquatic ecological research[J]. Advances in Ecological Research, 2018, 59: 75−92.
|
[19] |
Ding Xiaowei, Liu Kaihui, Gong Guoli, et al. Volatile organic compounds in the salt-lake sediments of the Tibet Plateau influence prokaryotic diversity and community assembly[J]. Extremophiles, 2020, 24(2): 307−318. doi: 10.1007/s00792-020-01155-3
|
[20] |
Durham B P, Dearth S P, Sharma S, et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system[J]. Environmental Microbiology, 2017, 19(9): 3500−3513. doi: 10.1111/1462-2920.13834
|
[21] |
Weisskopf L, Schulz S, Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions[J]. Nature Reviews Microbiology, 2021, 19(6): 391−404. doi: 10.1038/s41579-020-00508-1
|
[22] |
Kampa M, Castanas E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362−367. doi: 10.1016/j.envpol.2007.06.012
|
[23] |
Podduturi R, Petersen M A, Vestergaard M, et al. Case study on depuration of RAS-produced pikeperch (Sander lucioperca) for removal of geosmin and other volatile organic compounds (VOCs) and its impact on sensory quality[J]. Aquaculture, 2021, 530: 735754. doi: 10.1016/j.aquaculture.2020.735754
|
[24] |
Zheng Jialang, Zhu Tao, Jin Wangyang, et al. Comparative analysis of carotenoids, fatty acids, minerals, tastes, and odor in the skin of wild versus farmed large yellow croaker: superior nutritional benefits with elevated heavy metal risks[J]. Aquaculture, 2025, 594: 741471. doi: 10.1016/j.aquaculture.2024.741471
|
[25] |
Chen Jiaxin, Guang Changtao, Xu Hao, et al. A review of cage and pen aquaculture: China[J]. FAO Fisheries Technical Paper, 2007, 498: 53−68.
|
[26] |
Conley D J, Carstensen J, Aigars J, et al. Hypoxia is increasing in the coastal zone of the Baltic Sea[J]. Environmental Science & Technology, 2011, 45(16): 6777−6783.
|
[27] |
Oduor N A, Munga C N, Ong'anda H O, et al. Nutrients and harmful algal blooms in Kenya's coastal and marine waters: a review[J]. Ocean & Coastal Management, 2023, 233: 106454.
|
[28] |
Bi Zhihao, Wang Wei, Zhao Lei, et al. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: a review[J]. Environmental Research, 2024, 260: 119592. doi: 10.1016/j.envres.2024.119592
|
[29] |
Narvarte B C V, Nelson W A, Roleda M Y. Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.[J]. Environmental Pollution, 2020, 266: 115344. doi: 10.1016/j.envpol.2020.115344
|
[30] |
Banerjee P, Garai P, Saha N C, et al. A critical review on the effect of nitrate pollution in aquatic invertebrates and fish[J]. Water, Air, & Soil Pollution, 2023, 234(6): 333.
|
[31] |
Pozzer A C, Gómez P A, Weiss J. Volatile organic compounds in aquatic ecosystems–Detection, origin, significance and applications[J]. Science of the Total Environment, 2022, 838: 156155. doi: 10.1016/j.scitotenv.2022.156155
|
[32] |
Santos A B, Vieira K R, Nogara G P, et al. Biogeneration of volatile organic compounds by microalgae: occurrence, behavior, ecological implications and industrial applications[M]//Moore J P. Volatile Organic Compounds: Occurrence, Behavior and Ecological Implications. New York: Nova Science Publishers, Inc. , 2016: 1−24.
|
[33] |
Fink P. Ecological functions of volatile organic compounds in aquatic systems[J]. Marine and Freshwater Behaviour and Physiology, 2007, 40(3): 155−168. doi: 10.1080/10236240701602218
|
[34] |
Lawson C A, Seymour J R, Possell M, et al. The volatilomes of Symbiodiniaceae-associated bacteria are influenced by chemicals derived from their algal partner[J]. Frontiers in Marine Science, 2020, 7: 106. doi: 10.3389/fmars.2020.00106
|
[35] |
Schulz-Bohm K, Zweers H, De Boer W, et al. A fragrant neighborhood: volatile mediated bacterial interactions in soil[J]. Frontiers in Microbiology, 2015, 6: 1212.
|
[36] |
杨王庭, 赵静娴, 徐庆欢, 等. 无磷条件诱导铜绿微囊藻 (Microcystis aeruginosa) 释放挥发性有机化合物对莱茵衣藻 (Chlamydomonas reinhardtii) 的影响[J]. 湖泊科学, 2018, 30(2): 449−457. doi: 10.18307/2018.0216
Yang Wangting, Zhao Jingxian, XU Qinghuan, et al. Phosphorus deficiency inducing volatile organic compounds from Microcystis aeruginosa and their effects on Chlamydomonas reinhadtii[J]. Journal of Lake Sciences, 2018, 30(2): 449−457. doi: 10.18307/2018.0216
|
[37] |
左照江. 藻类挥发性有机化合物研究进展[J]. 水生生物学报, 2017, 41(6): 1369−1379.
Zuo Zhaojiang. The review of research advances in algal volatile organic compounds[J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1369−1379.
|
[38] |
Abrahamsson K, Choo K S, Pedersén M, et al. Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae[J]. Phytochemistry, 2003, 64(3): 725−734. doi: 10.1016/S0031-9422(03)00419-9
|
[39] |
Abis L, Loubet B, Ciuraru R, et al. Reduced microbial diversity induces larger volatile organic compound emissions from soils[J]. Scientific Reports, 2020, 10(1): 6104. doi: 10.1038/s41598-020-63091-8
|
[40] |
王洋, 谢菲, 杜礼泉, 等. 酿酒专用小麦大曲中挥发性风味成分与微生物群落相关性分析[J]. 中国酿造, 2024, 43(2): 71−81.
Wang Yang, Xie Fei, Du Liquan, et al. Correlation analysis of volatile flavor components and microbial community in Daqu made by special wheat for brewing[J]. China Brewing, 2024, 43(2): 71−81.
|
[41] |
张海燕, 康三江, 张霁红, 等. 苹果酵素发酵过程中微生物群落与风味物质的相关性分析[J]. 中国酿造, 2022, 41(12): 110−119.
Zhang Haiyan, Kang Sanjiang, Zhang Jihong, et al. Correlation analysis between microbial community and flavor substance during fermentation process of apple Jiaosu[J]. China Brewing, 2022, 41(12): 110−119.
|
[42] |
吴玉玲, 付瑜, 张瑞, 等. 渤、黄海近海水体中芳香族有机化合物的分子识别和风险评估[J]. 海洋环境科学, 2024, 43(6): 898−908.
Wu Yuling, Fu Yu, Zhang Rui, et al. Molecular identification and risk assessment of aromatic organic compounds in offshore waters of Bohai and Yellow Seas[J]. Marine Environmental Science, 2024, 43(6): 898−908.
|
[43] |
Lipsewers Y A, Bale N J, Hopmans E C, et al. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea)[J]. Frontiers in Microbiology, 2014, 5: 472.
|
[44] |
Petchsomrit A, Chanthathamrongsiri N, Jiangseubchatveera N, et al. Extraction, antioxidant activity, and hydrogel formulation of marine Cladophora glomerata[J]. Algal Research, 2023, 71: 103011. doi: 10.1016/j.algal.2023.103011
|
[45] |
Skanda S, Vijayakumar B S. Antioxidant and antibacterial potential of crude extract of soil fungus Periconia sp. (SSS-8)[J]. Arabian Journal for Science and Engineering, 2022, 47: 6707−6714. doi: 10.1007/s13369-021-06061-0
|
[46] |
Zhao Fuqiang, Wang Ping, Lucardi R D, et al. Natural sources and bioactivities of 2, 4-Di-Tert-Butylphenol and its analogs[J]. Toxins, 2020, 12(1): 35. doi: 10.3390/toxins12010035
|
[47] |
Preuss R, Angerer J, Drexler H. Naphthalene—an environmental and occupational toxicant[J]. International Archives of Occupational and Environmental Health, 2003, 76(8): 556−576. doi: 10.1007/s00420-003-0458-1
|
[48] |
王兆琦, 赵珊, 蒋万枫, 等. 顶空气相色谱-质谱检测调和油中各单组分植物油含量[J]. 卫生研究, 2021, 50(5): 799−804.
Wang Zhaoqi, Zhao Shan, Jiang Wanfeng, et al. Determination of each single component vegetable oil in blend oil by headspace gas chromatography-mass spectrometry[J]. Journal of Hygiene Research, 2021, 50(5): 799−804.
|
[49] |
李美萍, 李蓉, 丁鹏霞, 等. HS-SPME条件优化并结合GC-MS分析新鲜及不同干燥方式香菜的挥发性成分[J]. 食品工业科技, 2019, 40(7): 228−236,247.
Li Mei ping, Li Rong, Ding Peng xia, et al. Optimization of HS-SPME condition and analysis of volatile compounds in fresh and different drying coriander by GC-MS[J]. Science and Technology of Food Industry, 2019, 40(7): 228−236,247.
|
[50] |
Love C R, Arrington E C, Gosselin K M, et al. Microbial production and consumption of hydrocarbons in the global ocean[J]. Nature Microbiology, 2021, 6(4): 489−498. doi: 10.1038/s41564-020-00859-8
|
[51] |
Harada N, Hirose Y, Chihong S, et al. A novel characteristic of a phytoplankton as a potential source of straight-chain alkanes[J]. Scientific Reports, 2021, 11(1): 14190. doi: 10.1038/s41598-021-93204-w
|
[52] |
Liu Jie, Wan Peng, Xie Caifeng, et al. Key aroma-active compounds in brown sugar and their influence on sweetness[J]. Food Chemistry, 2021, 345: 128826. doi: 10.1016/j.foodchem.2020.128826
|
[53] |
Wang Xiaojun, Guo Mengyao, Song Huanlu, et al. Characterization of key odor-active compounds in commercial high-salt liquid-state soy sauce by switchable GC/GC× GC–olfactometry–MS and sensory evaluation[J]. Food Chemistry, 2021, 342: 128224. doi: 10.1016/j.foodchem.2020.128224
|
[54] |
李嘉欣, 孟斌斌, 朱凯. 樟树叶精油组成分析及抗氧化活性研究[J]. 林产化学与工业, 2020, 40(1): 84−90. doi: 10.3969/j.issn.0253-2417.2020.01.012
Li Jiaxin, Meng Binbin, Zhu Kai. Components and antioxidant activity of camphor leaves essential oil[J]. Chemistry and Industry of Forest Products, 2020, 40(1): 84−90. doi: 10.3969/j.issn.0253-2417.2020.01.012
|