Citation: | Li Zhong,Wei Xuelian,Liu Wanting, et al. Exploring the Molecular regulatory mechanisms of planktonic larvae development in Mytilus coruscus using weighted gene co-expression network analysis and time-series differential analysis[J]. Haiyang Xuebao,2025, 47(7):1–15 doi: 10.12284/hyxb2025072 |
[1] |
张玺, 齐钟彦. 贝类学纲要[M]. 北京: 科学出版社, 1961.
Zhang Xi, Qi Zhongyan. Outline of Conchology[M]. Beijing: Science Press, 1961. (查阅网上资料, 未找到本条文献英文信息, 请确认)
|
[2] |
张永普, 郑洁, 王一农. 浙南岛屿岩相潮间带贻贝类的生态特点[J]. 海洋湖沼通报, 2000(3): 24−28. doi: 10.3969/j.issn.1003-6482.2000.03.006
Zhang Yongpu, Zheng Jie, Wang Yinong. Ecological characteristics of the intertidal mussels of the islands south of Zhejiang[J]. Transactions of Oceanology and Limnology, 2000(3): 24−28. doi: 10.3969/j.issn.1003-6482.2000.03.006
|
[3] |
张义浩. 浙江沿海贻贝种类形态比较研究[J]. 渔业经济研究, 2009(2): 14−20.
Zhang Yihao. Study on shape comparison of mussel species in Zhejiang coast[J]. Fisheries Economy Research, 2009(2): 14−20.
|
[4] |
叶莹莹, 徐梅英, 吴常文. 几种环境因子对厚壳贻贝浮游幼虫生长与存活的影响[J]. 浙江海洋学院学报(自然科学版), 2011, 30(4): 292−296.
Ye Yingying, Xu Meiying, Wu Changwen. Influences of some environmental factors on growth and survival of Mytilus coruscus gould larvae[J]. Journal of Zhejiang Ocean University(Natural Science), 2011, 30(4): 292−296.
|
[5] |
王朝新. 厚壳贻贝苗种规模化繁育技术[J]. 现代农业科技, 2021(17): 208−210.
Wang Chaoxin. Large-scale breeding technology of thick shell mussel[J]. Modern Agricultural Science and Technology, 2021(17): 208−210. (查阅网上资料, 未找到本条文献英文信息, 请确认)
|
[6] |
颜成瑞. 厚壳贻贝Hox基因家族结构与表达模式的初步探究[D]. 舟山: 浙江海洋大学, 2022.
Yan Chengrui. Preliminary exploration of Hox Gene family structure and expression pattern in Mytilus coruscus[D]. Zhoushan: Zhejiang Ocean University, 2022.
|
[7] |
顾忠旗, 倪梦麟, 范卫明. 厚壳贻贝胚胎发育观察[J]. 安徽农业科学, 2010, 38(32): 18213−18215. doi: 10.3969/j.issn.0517-6611.2010.32.089
Gu Zhongqi, Ni Menglin, Fan Weiming. Observation on embryonic development of Mytilus coruscus[J]. Journal of Anhui Agricultural Sciences, 2010, 38(32): 18213−18215. doi: 10.3969/j.issn.0517-6611.2010.32.089
|
[8] |
徐嘉康, 王劲松, 方怡涵, 等. 厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响[J]. 海洋学报, 2021, 43(9): 81−91.
Xu Jiakang, Wang Jinsong, Fang Yihan, et al. Effects of intestinal bacterial biofilms on settlement process of larvae and plantigrades in Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(9): 81−91.
|
[9] |
林欣. 四指马鲅(Eleutheronema tetradactylum)应对低氧胁迫的组织影响以及鳃转录组学分析研究[D]. 大连: 大连海洋大学, 2023.
Lin Xin. Tissue effects and gill transcriptomic analysis of Eleutheronema tetradactylum in response to hypoxia stress[D]. Dalian: Dalian Ocean University, 2023. (查阅网上资料, 未找到本条文献英文信息, 请确认)
|
[10] |
Brown D D. Gene expression in eukaryotes[J]. Science, 1981, 211(4483): 667−674. doi: 10.1126/science.6256857
|
[11] |
Cramer P. Organization and regulation of gene transcription[J]. Nature, 2019, 573(7772): 45−54. doi: 10.1038/s41586-019-1517-4
|
[12] |
Chen Yuxin, Chen Yongsheng, Shi Chunmei, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. GigaScience, 2018, 7(1): gix120.
|
[13] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
|
[14] |
Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357−359. doi: 10.1038/nmeth.1923
|
[15] |
Li Bo, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323. doi: 10.1186/1471-2105-12-323
|
[16] |
Pertea M, Pertea G M, Antonescu C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3): 290−295. doi: 10.1038/nbt.3122
|
[17] |
Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3): 562−578. doi: 10.1038/nprot.2012.016
|
[18] |
Kang Yujian, Yang Dechang, Kong Lei, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features[J]. Nucleic Acids Research, 2017, 45(W1): W12−W16. doi: 10.1093/nar/gkx428
|
[19] |
Zhao Yingdong, Li M C, Konaté M M, et al. TPM, FPKM, or normalized counts? a comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository[J]. Journal of Translational Medicine, 2021, 19(1): 269. doi: 10.1186/s12967-021-02936-w
|
[20] |
Wang Likun, Feng Zhixing, Wang Xi, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136−138. doi: 10.1093/bioinformatics/btp612
|
[21] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9(1): 559. doi: 10.1186/1471-2105-9-559
|
[22] |
Kumar L, Futschik M E. Mfuzz: a software package for soft clustering of microarray data[J]. Bioinformation, 2007, 2(1): 5−7. doi: 10.6026/97320630002005
|
[23] |
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498−2504. doi: 10.1101/gr.1239303
|
[24] |
Chin C H, Chen S H, Wu H H, et al. CytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Systems Biology, 2014, 8(S4): S11. doi: 10.1186/1752-0509-8-S4-S11
|
[25] |
Chen Chengjie, Chen Hao, Zhang Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
|
[26] |
Buchfink B, Xie Chao, Huson D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59−60. doi: 10.1038/nmeth.3176
|
[27] |
Koopman P. Sex determination: a tale of two Sox genes[J]. Trends in Genetics, 2005, 21(7): 367−370. doi: 10.1016/j.tig.2005.05.006
|
[28] |
Avilion A A, Nicolis S K, Pevny L H, et al. Multipotent cell lineages in early mouse development depend on SOX2 function[J]. Genes & Development, 2003, 17: 126−140.
|
[29] |
Hong C S, Saint-Jeannet J P. Sox proteins and neural crest development[J]. Seminars in Cell & Developmental Biology, 2005, 16(6): 694−703.
|
[30] |
Wegner M. All purpose Sox: the many roles of Sox proteins in gene expression[J]. The International Journal of Biochemistry & Cell Biology, 2010, 42(3): 381−390.
|
[31] |
Wilsker D, Patsialou A, Dallas P B, et al. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development[J]. Cell Growth and Differentiation, 2002, 13(3): 95−106.
|
[32] |
Cheng Zhongyan, He Tingting, Gao Xiaoming, et al. ZBTB transcription factors: key regulators of the development, differentiation and effector function of T cells[J]. Frontiers in Immunology, 2021, 12: 713294. doi: 10.3389/fimmu.2021.713294
|
[33] |
Wasylyk B, Hahn S L, Giovane A. The Ets family of transcription factors[J]. European Journal of Biochemistry, 1993, 211(1/2): 7−18.
|
[34] |
Wen Qiang, Wang Haitao, Little P J, et al. Forkhead family transcription factor FoxO and neural differentiation[J]. Neurogenetics, 2012, 13(2): 105−113. doi: 10.1007/s10048-012-0320-2
|
[35] |
Fatemi M, Wade P A. MBD family proteins: reading the epigenetic code[J]. Journal of Cell Science, 2006, 119(Pt 15): 3033−3037.
|
[36] |
Paixão-Côrtes V R, Salzano F M, Bortolini M C. Origins and evolvability of the PAX family[J]. Seminars in Cell & Developmental Biology, 2015, 44: 64−74.
|
[37] |
Wilson V, Conlon F L. The T-box family[J]. Genome Biology, 2002, 3(6): reviews3008.
|
[38] |
Roussigne M, Kossida S, Lavigne A C, et al. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase[J]. Trends In Biochemical Sciences, 2003, 28(2): 66−69. doi: 10.1016/S0968-0004(02)00013-0
|
[39] |
廖晓婷. 青蛤性腺发育及性别相关基因dmrt1和foxl2的表达研究[D]. 连云港: 江苏海洋大学, 2022.
Liao Xiaoting. Study on the gonadal development and expression of sex related genes dmrtl and foxl2 in clam Cyclina sinensis[D]. Lianyungang: Jiangsu Ocean University, 2022.
|
[40] |
Miller J A, Horvath S, Geschwind D H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(28): 12698−12703.
|
[41] |
Voineagu I, Wang Xinchen, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology[J]. Nature, 2011, 474(7351): 380−384. doi: 10.1038/nature10110
|
[42] |
Xue Zhigang, Huang K, Cai Chaochao, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing[J]. Nature, 2013, 500(7464): 593−597. doi: 10.1038/nature12364
|
[43] |
高进. 半滑舌鳎(Cynoglossus semilaevis)性腺发育中性别相关基因挖掘及Sox基因家族生物信息学分析[D]. 南京: 南京农业大学, 2016.
Gao Jin. Sex related genes mining in the developmental gonad and bioinformatical analysis on sox family of Cynoglossus semilaevis[D]. Nanjing: Nanjing Agricultural University, 2016.
|
[44] |
孔宁. 温度、盐度对皱纹盘鲍“97”选群生长发育的影响[D]. 青岛: 中国科学院海洋研究所, 2016.
Kong Ning. Effects of temperature and salinity on growth and development of "97" selective breeding population of Haliotis discus hannai Ino[D]. Qingdao: Institute of Oceanology, Chinese Academy of Science, 2016.
|
[45] |
Bar-Joseph Z. Analyzing time series gene expression data[J]. Bioinformatics, 2004, 20(16): 2493−2503. doi: 10.1093/bioinformatics/bth283
|
[46] |
Zalenski A A, Majumder S, De K, et al. An interphase pool of KIF11 localizes at the basal bodies of primary cilia and a reduction in KIF11 expression alters cilia dynamics[J]. Scientific Reports, 2020, 10(1): 13946. doi: 10.1038/s41598-020-70787-4
|
[47] |
庞连慧, 罗双双, 石林林, 等. 团头鲂cdc20基因的序列特征和表达分析[J]. 华中农业大学学报, 2022, 41(4): 226−232. doi: 10.3969/j.issn.1000-2421.2022.4.hznydx202204029
Pang Lianhui, Luo Shuangshuang, Shi Linlin, et al. Sequence characteristics and expression analysis of cdc20 gene in Megalobrama amblycephala[J]. Journal of Huazhong Agricultural University, 2022, 41(4): 226−232. doi: 10.3969/j.issn.1000-2421.2022.4.hznydx202204029
|
[48] |
Ma Wanying, Du Hua, Kazmi S S U H, et al. UBC gene family and their potential functions on the cellular homeostasis under the elevated pCO2 stress in the diatom Phaeodactylum tricornutum[J]. Ecological Indicators, 2023, 148: 110106. doi: 10.1016/j.ecolind.2023.110106
|
[49] |
Borlado L R, Méndez J. CDC6: from DNA replication to cell cycle checkpoints and oncogenesis[J]. Carcinogenesis, 2008, 29(2): 237−243. doi: 10.1093/carcin/bgm268
|
[50] |
Koltowska K, Apitz H, Stamataki D, et al. Ssrp1a controls organogenesis by promoting cell cycle progression and RNA synthesis[J]. Development, 2013, 140(9): 1912−1918. doi: 10.1242/dev.093583
|
[51] |
Hou Tingting, Zhang Rufeng, Jian Chongshu, et al. NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly[J]. Cell Research, 2019, 29(9): 754−766. doi: 10.1038/s41422-019-0208-x
|
[52] |
Marsili S, Tichon A, Kundnani D, et al. Gene co-expression analysis of human RNASEH2A reveals functional networks associated with DNA replication, DNA damage response, and cell cycle regulation[J]. Biology(Basel), 2021, 10(3): 221.
|
[53] |
Skaar J R, Pagano M. Cdh1: a master G0/G1 regulator[J]. Nature Cell Biology, 2008, 10(7): 755−757. doi: 10.1038/ncb0708-755
|
[54] |
Zhang Mengna, Li Hui, Guo Mengyu, et al. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish(Danio rerio) and its potential mechanisms[J]. Science of The Total Environment, 2024, 922: 171219. doi: 10.1016/j.scitotenv.2024.171219
|
[55] |
Lee C Y, Lai Tingyu, Tsai M K, et al. The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation[J]. Nature Communications, 2017, 8(1): 15502. doi: 10.1038/ncomms15502
|
[56] |
刘乔. 基于转录组分析不同生长阶段民猪的特异性表达基因与时序特征[D]. 哈尔滨: 东北农业大学, 2023.
Liu Qiao. Analysis of specific expressed genes andtemporal characteristics of Min Pigs at different growth stages based on transcriptomics[D]. Harbin: Northeast Agricultural University, 2023.
|
[57] |
赵佳福, 许厚强, 宋书弦, 等. BLM解旋酶基因的克隆、表达载体构建及表达研究[J]. 生物技术通报, 2018, 34(11): 152−159.
Zhao Jiafu, Xu Houqiang, Song Shuxian, et al. Cloning and expression vector construction of BLM helicase gene, and its expression analysis[J]. Biotechnology Bulletin, 2018, 34(11): 152−159.
|
[58] |
Filipovska A, Rackham O. Specialization from synthesis: how ribosome diversity can customize protein function[J]. FEBS Letters, 2013, 587(8): 1189−1197. doi: 10.1016/j.febslet.2013.02.032
|
[59] |
Hulm J L, Mcintosh K B, Bonham-Smith P C. Variation in transcript abundance among the four members of the Arabidopsis thaliana RIBOSOMAL PROTEIN S15a gene family[J]. Plant Science, 2005, 169(1): 267−278. doi: 10.1016/j.plantsci.2005.04.001
|
[60] |
Latchman D S. Transcription factors: an overview[J]. The International Journal of Biochemistry & Cell Biology, 1997, 29(12): 1305−1312.
|
[61] |
Yu Jiachen, Zhang Lingling, Li Yangping, et al. Genome-wide identification and expression profiling of the SOX gene family in a bivalve mollusc Patinopecten yessoensis[J]. Gene, 2017, 627: 530−537. doi: 10.1016/j.gene.2017.07.013
|
[62] |
王倩, 郇聘, 刘保忠. 笠贝soxb、mox基因的鉴定及在足原基发育中的表达模式[J]. 海洋与湖沼, 2019, 50(5): 1091−1097. doi: 10.11693/hyhz20190100023
Wang Qian, Huan Pin, Liu Baozhong. Expression patterns of soxb and mox genes in Lottia goshimai during the formation of molluscan foot[J]. Oceanologia et Limnologia Sinica, 2019, 50(5): 1091−1097. doi: 10.11693/hyhz20190100023
|
[63] |
梁少帅, 于潇含, 杨丹丹, 等. 栉孔扇贝sox9基因的cDNA克隆及其在不同发育时期性腺中的表达特征[J]. 中国水产科学, 2017, 24(6): 1184−1192. doi: 10.3724/SP.J.1118.2017.17123
Liang Shaoshuai, Yu Xiaohan, Yang Dandan, et al. Molecular cloning of sox9 cDNA and its expression characteristies in gonads at different developmental stages of Chlamys farreri[J]. Journal of Fishery Sciences of China, 2017, 24(6): 1184−1192. doi: 10.3724/SP.J.1118.2017.17123
|
[64] |
徐东杰, 谢熙, 王蒙恩, 等. Sox基因家族在水生动物性腺发育中的功能研究进展[J]. 生物学杂志, 2022, 39(3): 97−102. doi: 10.3969/j.issn.2095-1736.2022.03.097
Xu Dongjie, Xie Xi, Wang Mengen, et al. Research advance on the function of Sox gene family in aquatic animal gonadal development[J]. Journal of Biology, 2022, 39(3): 97−102. doi: 10.3969/j.issn.2095-1736.2022.03.097
|
[65] |
吴静. SOX2在猪早期胚胎发育中生物学功能及Hippo信号通路对其表达调控的研究[D]. 哈尔滨: 东北农业大学, 2023.
Wu Jing. Study on the biological function of SOX2 and the regulation of its expression by the hippo signaling pathway in porcineearly embryonic development[D]. Harbin: Northeast Agricultural University, 2023.
|