Citation: | MA Tianyi,ZHI Hai,ZHANG Ronghua, et al. Prediction and correction of ENSO using an intelligent Air-Sea coupling model based on the Transformer architecture[J]. Haiyang Xuebao,2025, 47(6):1–14 doi: 10.12284/hyxb2025061 |
[1] |
Zhang Ronghua, Rothstein L M, Busalacchi A J. Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean[J]. Nature, 1998, 391(6670): 879−883. doi: 10.1038/36081
|
[2] |
Capotondi A, Wittenberg A T, Newman M, et al. Understanding ENSO diversity[J]. Bulletin of the American Meteorological Society, 2015, 96(6): 921−938. doi: 10.1175/BAMS-D-13-00117.1
|
[3] |
Zhang Ronghua, Yu Yongqiang, Song Zhenya, et al. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China[J]. Journal of Oceanology and Limnology, 2020, 38(4): 930−961. doi: 10.1007/s00343-020-0157-8
|
[4] |
陈明诚. 厄尔尼诺和拉尼娜生命史不对称机理研究[J]. 气象学报, 2017, 25(2): 67−70. (查阅网上资料, 未找到本条文献信息, 请确认)
Chen Mingcheng. Research on the asymmetric mechanisms of the life cycles of El Niño and La Niña[J]. Journal of Meteorological Research, 2017, 25(2): 67−70.
|
[5] |
高川, 陈茂楠, 周路, 等. 2020—2021年热带太平洋持续性双拉尼娜事件的演变[J]. 中国科学: 地球科学, 2022, 52(12): 2353-2372.
Gao Chuan, Chen Maonan, Zhou Lu, et al. The 2020–2021 prolonged La Niña evolution in the tropical Pacific[J]. Science China Earth Sciences, 2022, 65(12): 2248-2266.
|
[6] |
Yeh S W, Kug J S, Dewitte B, et al. El Niño in a changing climate[J]. Nature, 2009, 461(7263): 511−514. doi: 10.1038/nature08316
|
[7] |
Timmermann A, An S I, Kug J S, et al. El Niño-Southern Oscillation complexity[J]. Nature, 2018, 559(7715): 535−545. doi: 10.1038/s41586-018-0252-6
|
[8] |
Zhang Ronghua, Gao Chuan, Feng Licheng. Recent ENSO evolution and its real-time prediction challenges[J]. National Science Review, 2022, 9(4): nwac052. doi: 10.1093/nsr/nwac052
|
[9] |
张荣华. 用于厄尔尼诺-南方涛动(ENSO)研究的海气耦合模式综述: 中间型和混合型模式[J]. 海洋与湖沼, 2024, 55(1): 1−23.
Zhang Ronghua. A review of progress in coupled ocean-atmosphere model developments for Enso studies: intermediate coupled models and hybrid coupled models[J]. Oceanologia et Limnologia Sinica, 2024, 55(1): 1−23.
|
[10] |
Chen Dake, Cane M A, Kaplan A, et al. Predictability of El Niño over the past 148 years[J]. Nature, 2004, 428(6984): 733−736. doi: 10.1038/nature02439
|
[11] |
Tang Youmin, Zhang Ronghua, Liu Ting, et al. Progress in ENSO prediction and predictability study[J]. National Science Review, 2018, 5(6): 826−839. doi: 10.1093/nsr/nwy105
|
[12] |
Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
|
[13] |
Luo Jingjia, Masson S, Behera S K, et al. Extended ENSO predictions using a fully coupled ocean–atmosphere model[J]. Journal of Climate, 2008, 21(1): 84−93. doi: 10.1175/2007JCLI1412.1
|
[14] |
Ding Ruiqiang, Tseng Y H, Di Lorenzo E, et al. Multi-year El Niño events tied to the North Pacific Oscillation[J]. Nature Communications, 2022, 13(1): 3871. doi: 10.1038/s41467-022-31516-9
|
[15] |
Zhu Jieshun, Kumar A, Huang Bohua, et al. The role of off -equatorial surface temperature anomalies in the 2014 El Niño prediction[J]. Scientific Reports, 2016, 6(1): 19677. doi: 10.1038/srep19677
|
[16] |
Dong Changming, Xu Guangjun, Han Guoqing, et al. Recent developments in artificial intelligence in oceanography[J]. Ocean-Land-Atmosphere Research, 2022, 2022: 9870950.
|
[17] |
Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advance, 2020, 6(29): eaba1482.
|
[18] |
Zhu Yuchao, Zhang Ronghua, Moum J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022, 9(8): nwac044. doi: 10.1093/nsr/nwac044
|
[19] |
Zhou Lu, Zhang Ronghua. A hybrid neural network model for ENSO prediction in combination with principal oscillation pattern analyses[J]. Advances in Atmospheric Sciences, 2022, 39(6): 889−902. doi: 10.1007/s00376-021-1368-4
|
[20] |
Taylor J, Feng Ming. A deep learning model for forecasting global monthly mean sea surface temperature anomalies[J]. Frontiers in Climate, 2022, 4: 932932. doi: 10.3389/fclim.2022.932932
|
[21] |
Gong Bing, Langguth M, Ji Yan, et al. Temperature forecasting by deep learning methods[J]. Geoscientific Model Development, 2022, 15(23): 8931−8956. doi: 10.5194/gmd-15-8931-2022
|
[22] |
Mu Bin, Cui Yuehan, Yuan Shijin, et al. Simulation, precursor analysis and targeted observation sensitive area identification for two types of ENSO using ENSO-MC v1.0[J]. Geoscientific Model Development, 2022, 15(10): 4105−4127. doi: 10.5194/gmd-15-4105-2022
|
[23] |
Devlin J, Chang Mingwei, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: ACL, 2019.
|
[24] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations. OpenReview. net, 2021. (查阅网上资料, 未找到对应的出版地信息, 请确认)
|
[25] |
Zhou Lu, Zhang Ronghua. A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions[J]. Science Advances, 2023, 9(10): eadf2827. doi: 10.1126/sciadv.adf2827
|
[26] |
Ham Y G, Kim J H, Kim E S, et al. Unified deep learning model for El Niño/Southern oscillation forecasts by incorporating seasonality in climate data[J]. Science Bulletin, 2021, 66(13): 1358−1366. doi: 10.1016/j.scib.2021.03.009
|
[27] |
秦正坤, 林朝晖, 陈红, 等. 基于EOF/SVD的短期气候预测误差订正方法及其应用[J]. 气象学报, 2011, 69(2): 289−296. doi: 10.11676/qxxb2011.024
Qin Zhengkun, Lin Zhaohui, Chen Hong, et al. The bias correction methods based on the EOF/SVD for short-term climate prediction and their applications[J]. Acta Meteorologica Sinica, 2011, 69(2): 289−296. doi: 10.11676/qxxb2011.024
|
[28] |
Yu Yue, Lin Zhaohui, Qin Zhengkun. Improved EOF-based bias correction method for seasonal forecasts and its application in IAP AGCM4.1[J]. Atmospheric and Oceanic Science Letters, 2018, 11(6): 499−508. doi: 10.1080/16742834.2018.1529532
|
[29] |
姚方玲, 秦正坤, 林朝晖, 等. 基于旋转经验正交分解的流域降水气候预测误差订正方法[J]. 气候与环境研究, 2023, 28(3): 327−342. doi: 10.3878/j.issn.1006-9585.2022.22071
Yao Fangling, Qin Zhengkun, Lin Zhaohui, et al. Bias correction method based on rotated empirical orthogonal function for seasonal precipitation prediction on basin scale[J]. Climatic and Environmental Research, 2023, 28(3): 327−342. doi: 10.3878/j.issn.1006-9585.2022.22071
|
[30] |
Zhang Ronghua, Zhou Lu, Gao Chuan, et al. A transformer-based coupled ocean-atmosphere model for ENSO studies[J]. Science Bulletin, 2024, 69(15): 2323−2327. doi: 10.1016/j.scib.2024.04.048
|
[31] |
Newman M, Sardeshmukh P D. Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?[J]. Geophysical Research Letters, 2017, 44(16): 8520−8529. doi: 10.1002/2017GL074088
|
[32] |
郑依玲, 陈泽生, 王海, 等. 2015/2016年超强厄尔尼诺事件基本特征及生成和消亡机制[J]. 热带海洋学报, 2019, 38(4): 10−19.
Zheng Yiling, Chen Zesheng, Wang Hai, et al. Features of 2015/2016 extreme El Niño event and its evolution mechanisms[J]. Journal of Tropical Oceanography, 2019, 38(4): 10−19.
|
[33] |
Rivera Tello G A, Takahashi K, Karamperidou C. Explained predictions of strong eastern Pacific El Niño events using deep learning[J]. Scientific Reports, 2023, 13(1): 21150. doi: 10.1038/s41598-023-45739-3
|
[34] |
Xu Zichun, Zhao Yang, Deng Zhongwen. The possibilities and limits of AI in Chinese judicial judgment[J]. AI & Society, 2022, 37(4): 1601−1611.
|