Citation: | Tang Rui,Zhao Ning. Vedde Ash-based marine reservoir age reconstruction of the mid-latitude Northwest Atlantic[J]. Haiyang Xuebao,2025, 47(4):1–15 doi: 10.12284/hyxb2025041 |
[1] |
Mangerud J, Lie S E, Furnes H, et al. A Younger Dryas Ash Bed in western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic[J]. Quaternary Research, 1984, 21(1): 85−104. doi: 10.1016/0033-5894(84)90092-9
|
[2] |
Lane C S, Blockley S P E, Mangerud J, et al. Was the 12.1 ka Icelandic Vedde Ash one of a kind?[J]. Quaternary Science Reviews, 2012, 33: 87−99. doi: 10.1016/j.quascirev.2011.11.011
|
[3] |
Lowe D J. Tephrochronology and its application: a review[J]. Quaternary Geochronology, 2011, 6(2): 107−153. doi: 10.1016/j.quageo.2010.08.003
|
[4] |
Birks H H, Gulliksen S, Haflidason H, et al. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway[J]. Quaternary Research, 1996, 45(2): 119−127. doi: 10.1006/qres.1996.0014
|
[5] |
Rasmussen S O, Andersen K K, Svensson A M, et al. A new Greenland ice core chronology for the last glacial termination[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D6): D06102.
|
[6] |
Heaton T J, Bard E, Bronk Ramsey C, et al. Radiocarbon: a key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun[J]. Science, 2021, 374(6568): abd7096. doi: 10.1126/science.abd7096
|
[7] |
Audi G, Bersillon O, Blachot J, et al. The Nubase evaluation of nuclear and decay properties[J]. Nuclear Physics A, 2003, 729(1): 3−128. doi: 10.1016/j.nuclphysa.2003.11.001
|
[8] |
Hughes E E, Mann W B. The half-life of carbon-14: comments on the mass-spectrometric method[J]. The International Journal of Applied Radiation and Isotopes, 1964, 15(3): 97−100. doi: 10.1016/0020-708X(64)90038-9
|
[9] |
Mangerud J. Radiocarbon dating of marine shells, including a discussion of apparent age of recent shells from Norway[J]. Boreas, 1972, 1(2): 143−172. doi: 10.1111/j.1502-3885.1972.tb00147.x
|
[10] |
Alves E Q, Macario K, Ascough P, et al. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects[J]. Reviews of Geophysics, 2018, 56(1): 278−305. doi: 10.1002/2017RG000588
|
[11] |
Siani G, Paterne M, Michel E, et al. Mediterranean sea surface radiocarbon reservoir age changes since the last glacial maximum[J]. Science, 2001, 294(5548): 1917−1920. doi: 10.1126/science.1063649
|
[12] |
Hua Quan, Webb G E, Zhao Jianxin, et al. Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes[J]. Earth and Planetary Science Letters, 2015, 422: 33−44. doi: 10.1016/j.jpgl.2015.03.049
|
[13] |
Sikes E L, Guilderson T P. Southwest Pacific Ocean surface reservoir ages since the last glaciation: circulation insights from multiple‐core studies[J]. Paleoceanography, 2016, 31(2): 298−310. doi: 10.1002/2015PA002855
|
[14] |
Skinner L C, Bard E. Radiocarbon as a dating tool and tracer in paleoceanography[J]. Reviews of Geophysics, 2022, 60(1): e2020RG000720. doi: 10.1029/2020RG000720
|
[15] |
Siani G, Michel E, De Pol-Holz R, et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation[J]. Nature Communications, 2013, 4(1): 2758. doi: 10.1038/ncomms3758
|
[16] |
Austin W E N, Bard E, Hunt J B, et al. The 14C age of the icelandic vedde ash: implications for younger dryas marine reservoir age corrections[J]. Radiocarbon, 1995, 37(1): 53−62. doi: 10.1017/S0033822200014788
|
[17] |
Bard E, Arnold M, Mangerud J, et al. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event[J]. Earth and Planetary Science Letters, 1994, 126(4): 275−287. doi: 10.1016/0012-821X(94)90112-0
|
[18] |
Muschitiello F, D’Andrea W J, Schmittner A, et al. Deep-water circulation changes lead North Atlantic climate during deglaciation[J]. Nature Communications, 2019, 10(1): 1272. doi: 10.1038/s41467-019-09237-3
|
[19] |
Bondevik S, Mangerud J, Gulliksen S. The marine 14C age of the Vedde Ash Bed along the west coast of Norway[J]. Journal of Quaternary Science, 2001, 16(1): 3−7. doi: 10.1002/1099-1417(200101)16:1<3::AID-JQS592>3.0.CO;2-G
|
[20] |
Wastegård S. Early to middle Holocene silicic tephra horizons from the Katla volcanic system, Iceland: new results from the Faroe Islands[J]. Journal of Quaternary Science, 2002, 17(8): 723−730. doi: 10.1002/jqs.724
|
[21] |
Matthews I P, Birks H H, Bourne A J, et al. New age estimates and climatostratigraphic correlations for the Borrobol and Penifiler Tephras: evidence from Abernethy Forest, Scotland[J]. Journal of Quaternary Science, 2011, 26(3): 247−252. doi: 10.1002/jqs.1498
|
[22] |
Mortensen A K, Bigler M, Grönvold K, et al. Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core[J]. Journal of Quaternary Science, 2005, 20(3): 209−219. doi: 10.1002/jqs.908
|
[23] |
Koren J H, Svendsen J I, Mangerud J, et al. The Dimna Ash—a 12.814Cka-old volcanic ash in western Norway[J]. Quaternary Science Reviews, 2008, 27(1/2): 85−94.
|
[24] |
Bond G C, Mandeville C, Hoffmann S. Were rhyolitic glasses in the Vedde Ash and in the North Atlantic's Ash Zone 1 produced by the same volcanic eruption?[J]. Quaternary Science Reviews, 2001, 20(11): 1189−1199. doi: 10.1016/S0277-3791(00)00146-3
|
[25] |
Thornalley D J R, McCave I N, Elderfield H. Tephra in deglacial ocean sediments south of Iceland: Stratigraphy, geochemistry and oceanic reservoir ages[J]. Journal of Quaternary Science, 2011, 26(2): 190−198. doi: 10.1002/jqs.1442
|
[26] |
Griggs A J, Davies S M, Abbott P M, et al. Optimising the use of marine tephrochronology in the North Atlantic: a detailed investigation of the Faroe Marine Ash Zones II, III and IV[J]. Quaternary Science Reviews, 2014, 106: 122−139. doi: 10.1016/j.quascirev.2014.04.031
|
[27] |
Schindlbeck J C, Kutterolf S, Freundt A, et al. Emplacement processes of submarine volcaniclastic deposits(IODP Site C0011, Nankai Trough)[J]. Marine Geology, 2013, 343: 115−124. doi: 10.1016/j.margeo.2013.06.017
|
[28] |
Bard E, Arnold M, Duprat J, et al. Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric 14C dating[J]. Climate Dynamics, 1987, 1(2): 101−112. doi: 10.1007/BF01054479
|
[29] |
Bard E. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications[J]. Paleoceanography, 1988, 3(6): 635−645. doi: 10.1029/PA003i006p00635
|
[30] |
Hunt J B, Fannin N G T, Hill P G, et al. The tephrochronology and radiocarbon dating of North Atlantic, Late-Quaternary sediments: an example from the St. Kilda Basin[J]. Geological Society, 1995, 90(1): 227−248. doi: 10.1144/GSL.SP.1995.090.01.15
|
[31] |
Kvamme T, Mangerud J, Furnes H, et al. Geochemistry of Pleistocene ash zones in cores from the North Atlantic[J]. Norsk Geologisk Tidsskrift, 1989, 69: 251−272.
|
[32] |
You Defang, Stein R, Fahl K, et al. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea[J]. Communications Earth & Environment, 2023, 4(1): 81.
|
[33] |
Voelker A H L, Haflidason H. Refining the Icelandic tephrachronology of the last glacial period–the deep-sea core PS2644 record from the southern Greenland Sea[J]. Global and Planetary Change, 2015, 131: 35−62. doi: 10.1016/j.gloplacha.2015.05.001
|
[34] |
Cook E, Abbott P M, Pearce N J G, et al. Volcanism and the Greenland ice cores: a new tephrochronological framework for the last glacial-interglacial transition(LGIT) based on cryptotephra deposits in three ice cores[J]. Quaternary Science Reviews, 2022, 292: 107596. doi: 10.1016/j.quascirev.2022.107596
|
[35] |
Grönvold K, Óskarsson N, Johnsen S J, et al. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments[J]. Earth and Planetary Science Letters, 1995, 135(1/4): 149−155.
|
[36] |
Björck S, Ingólfsson Ó, Haflidason H, et al. Lake Torfadalsvatn: a high resolution record of the North Atlantic ash zone I and the last glacial-interglacial environmental changes in Iceland[J]. Boreas, 1992, 21(1): 15−22. doi: 10.1111/j.1502-3885.1992.tb00009.x
|
[37] |
Harning D J, Thordarson T, Geirsdóttir Á, et al. Repeated Early Holocene eruptions of Katla, Iceland, limit the temporal resolution of the Vedde Ash[J]. Bulletin of Volcanology, 2024, 86(1): 2.
|
[38] |
Risebrobakken B, Jansen E, Andersson C, et al. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas[J]. Paleoceanography, 2003, 18(1): 1017.
|
[39] |
Austin W E N, Telford R J, Ninnemann U S, et al. North Atlantic reservoir ages linked to high Younger Dryas atmospheric radiocarbon concentrations[J]. Global and Planetary Change, 2011, 79(3/4): 226−233.
|
[40] |
Karpuz N K, Jansen E. A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climatic changes[J]. Paleoceanography, 1992, 7(4): 499−520. doi: 10.1029/92PA01651
|
[41] |
Eiríksson J, Knudsen K L, Haflidason H, et al. Late-glacial and Holocene palaeoceanography of the North Icelandic shelf[J]. Journal of Quaternary Science, 2000, 15(1): 23−42. doi: 10.1002/(SICI)1099-1417(200001)15:1<23::AID-JQS476>3.0.CO;2-8
|
[42] |
Schoning K. Palaeohydrography and marine conditions in the south-western part of the Vänern basin during the Younger Dryas and Early Preboreal[J]. GFF, 2002, 124(1): 1−10. doi: 10.1080/11035890201241001
|
[43] |
Jagan A. Tephra stratigraphy and geochemistry from three Icelandic lake cores: a new method for determining source volcano of tepra layers[D]. Edinburgh: The University of Edinburgh, 2010.
|
[44] |
Óladóttir B A, Sigmarsson O, Larsen G, et al. Provenance of basaltic tephra from Vatnajökull subglacial volcanoes, Iceland, as determined by major- and trace-element analyses[J]. The Holocene, 2011, 21(7): 1037−1048. doi: 10.1177/0959683611400456
|
[45] |
Haflidason H, Eiriksson J, Van Kreveld S. The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review[J]. Journal of Quaternary Science, 2000, 15(1): 3−22. doi: 10.1002/(SICI)1099-1417(200001)15:1<3::AID-JQS530>3.0.CO;2-W
|
[46] |
Ramsey C B, Housley R A, Lane C S, et al. The RESET tephra database and associated analytical tools[J]. Quaternary Science Reviews, 2015, 118: 33−47. doi: 10.1016/j.quascirev.2014.11.008
|
[47] |
Stuiver M, Pearson G W, Braziunas T. Radiocarbon age calibration of marine samples back to 9000 cal yr BP[J]. Radiocarbon, 1986, 28(2B): 980−1021. doi: 10.1017/S0033822200060264
|
[48] |
Bevington P R, Robinson D K, Blair J M, et al. Data reduction and error analysis for the physical sciences[J]. Computers in Physics, 1993, 7(4): 415−416. doi: 10.1063/1.4823194
|
[49] |
Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457−474. doi: 10.1214/ba/1339616472
|
[50] |
Carstens J, Hebbeln D, Wefer G. Distribution of planktic foraminifera at the ice margin in the Arctic(Fram Strait)[J]. Marine Micropaleontology, 1997, 29(3/4): 257−269.
|
[51] |
Simstich J, Sarnthein M, Erlenkeuser H. Paired δ18O signals of Neogloboquadrina pachyderma(s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas[J]. Marine Micropaleontology, 2003, 48(1/2): 107−125.
|
[52] |
Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: results from Global Data Analysis Project(GLODAP)[J]. Global Biogeochemical Cycles, 2004, 18(4): GB4031.
|
[53] |
Davies S M, Turney C S M, Lowe J J. Identification and significance of a visible, basalt-rich Vedde Ash layer in a Late-glacial sequence on the Isle of Skye, Inner Hebrides, Scotland[J]. Journal of Quaternary Science, 2001, 16(2): 99−104. doi: 10.1002/jqs.611
|
[54] |
Wastegård S, Wohlfarth B, Subetto D A, et al. Extending the known distribution of the Younger Dryas Vedde Ash into northwestern Russia[J]. Journal of Quaternary Science, 2000, 15(6): 581−586. doi: 10.1002/1099-1417(200009)15:6<581::AID-JQS558>3.0.CO;2-3
|
[55] |
Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745−750. doi: 10.1093/petrology/27.3.745
|
[56] |
Lohne Ø S, Mangerud J, Birks H H. Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology[J]. Journal of Quaternary Science, 2013, 28(5): 490−500. doi: 10.1002/jqs.2640
|
[57] |
Zhao Ning. Reconstructing deglacial ocean ventilation using radiocarbon: data and inverse modeling[D]. Woods Hole: Woods Hole Oceanographic Institution, 2017.
|
[58] |
Rutledal S. Tephrochronology of the North Atlantic during the Last Glacial period–a paleoclimate synchronization tool[D]. Bergen: University of Bergen, 2021.
|
[59] |
Duggen S, Olgun N, Croot P, et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review[J]. Biogeosciences, 2010, 7(3): 827−844. doi: 10.5194/bg-7-827-2010
|
[60] |
Bäckström D L, Kuijpers A, Heinemeier J. Late Quaternary North Atlantic paleoceanographic records and stable isotopic bariability four planktonic foraminiferal species[J]. Journal of Foraminiferal Research, 2001, 31(1): 25−32. doi: 10.2113/0310025
|
[61] |
Ruddiman W F, Glover L K. Vertical mixing of ice-rafted volcanic ash in North Atlantic Sediments[J]. Geological Society of America Bulletin, 1972, 83(9): 2817−2836. doi: 10.1130/0016-7606(1972)83[2817:VMOIVA]2.0.CO;2
|
[62] |
Thordarson T, Larsen G. Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history[J]. Journal of Geodynamics, 2007, 43(1): 118−152. doi: 10.1016/j.jog.2006.09.005
|
[63] |
Gudmundsdóttir E R, Larsen G, Eiríksson J. Tephra stratigraphy on the North Icelandic shelf: extending tephrochronology into marine sediments off North Iceland[J]. Boreas, 2012, 41(4): 718−734.
|
[64] |
Søndergaard M. Lateglacial and Holocene palaeoclimatic fluctuations on the North Icelandic shelf: foraminiferal analysis, sedimentology and tephrochronology of core MD992275[D]. Aarhus: University of Aarhus, 2005.
|
[65] |
Eiríksson J, Larsen G, Knudsen K L, et al. Marine reservoir age variability and water mass distribution in the Iceland Sea[J]. Quaternary Science Reviews, 2004, 23(20/22): 2247−2268.
|
[66] |
Lacasse C. Influence of climate variability on the atmospheric transport of Icelandic tephra in the subpolar North Atlantic[J]. Global and Planetary Change, 2001, 29(1/2): 31−55.
|
[67] |
Davies S M, Larsen G, Wastegård S, et al. Widespread dispersal of Icelandic tephra: how does the Eyjafjöll eruption of 2010 compare to past Icelandic events?[J]. Journal of Quaternary Science, 2010, 25(5): 605−611. doi: 10.1002/jqs.1421
|
[68] |
Saxby J, Rust A, Cashman K, et al. The importance of grain size and shape in controlling the dispersion of the Vedde cryptotephra[J]. Journal of Quaternary Science, 2020, 35(1/2): 175−185.
|
[69] |
Dolman A M, Groeneveld J, Mollenhauer G, et al. Estimating bioturbation from replicated small-sample radiocarbon ages[J]. Paleoceanography and Paleoclimatology, 2021, 36(7): 2020PA004142. doi: 10.1029/2020PA004142
|
[70] |
Galbraith E D, Kwon E Y, Bianchi D, et al. The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean[J]. Global Biogeochemical Cycles, 2015, 29(3): 307−324. doi: 10.1002/2014GB004929
|
[71] |
Alley R B, Clark P U. The deglaciation of the Northern Hemisphere: a global perspective[J]. Annual Review of Earth and Planetary Sciences, 1999, 27: 149−182. doi: 10.1146/annurev.earth.27.1.149
|
[72] |
Keigwin L D, Boyle E A. Did North Atlantic overturning halt 17, 000 years ago?[J]. Paleoceanography, 2008, 23(1): PA1101.
|
[73] |
Sy A, Rhein M, Lazier J R N, et al. Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean[J]. Nature, 1997, 386(6626): 675−679. doi: 10.1038/386675a0
|
[74] |
Stocker T F, Schmittner A. Influence of CO2 emission rates on the stability of the thermohaline circulation[J]. Nature, 1997, 388(6645): 862−865. doi: 10.1038/42224
|