Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Tang Rui,Zhao Ning. Vedde Ash-based marine reservoir age reconstruction of the mid-latitude Northwest Atlantic[J]. Haiyang Xuebao,2025, 47(4):1–15 doi: 10.12284/hyxb2025041
Citation: Tang Rui,Zhao Ning. Vedde Ash-based marine reservoir age reconstruction of the mid-latitude Northwest Atlantic[J]. Haiyang Xuebao,2025, 47(4):1–15 doi: 10.12284/hyxb2025041

Vedde Ash-based marine reservoir age reconstruction of the mid-latitude Northwest Atlantic

doi: 10.12284/hyxb2025041
  • Received Date: 2024-10-17
  • Rev Recd Date: 2025-03-13
  • Available Online: 2025-04-24
  • Marine reservoirs ages are of great value for the calibration of marine radiocarbon dates and the reconstruction of ocean circulation. Tephras from explosive volcanic eruptions can link marine and terrestrial radiocarbon-dated samples, aiding in the reconstruction of past marine reservoir ages. However, factors such as bioturbation and ice-rafted debris increase the complexity of the tephra chronostratigraphy, especially in study areas located far from the source volcano. This study analyzes the abundance and geochemical composition of tephras in a high-deposition-rate core from the mid-latitude North Atlantic, demonstrating its correlation with North Atlantic Ash Zone I from higher latitudes. By combining radiocarbon dating results with evidence from other sediment cores in the North Atlantic, we systematically evaluated the reliability of the Vedde Ash isochron in the mid- to high-latitude North Atlantic and inferred a transport mechanism for the Vedde Ash via sea ice to the Northwest Atlantic. Our high-resolution tephra abundance stratigraphy confirms the effect of bioturbation on the distribution of thin tephra layers in sediment cores, further emphasizing the importance of bioturbation correction in marine sediment records. After bioturbation correction, the marine reservoir age estimated for the core region during the Younger Dryas is (758 ± 58) a, which is in good agreement with the marine reservoir age distribution in the subpolar North Atlantic during the same period. Our study shows that, after evaluating the reliability of the tephra chronostratigraphy, Vedde and other tephras from the high-latitude North Atlantic can be applied over a wider spatial range.
  • loading
  • [1]
    Mangerud J, Lie S E, Furnes H, et al. A Younger Dryas Ash Bed in western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic[J]. Quaternary Research, 1984, 21(1): 85−104. doi: 10.1016/0033-5894(84)90092-9
    [2]
    Lane C S, Blockley S P E, Mangerud J, et al. Was the 12.1 ka Icelandic Vedde Ash one of a kind?[J]. Quaternary Science Reviews, 2012, 33: 87−99. doi: 10.1016/j.quascirev.2011.11.011
    [3]
    Lowe D J. Tephrochronology and its application: a review[J]. Quaternary Geochronology, 2011, 6(2): 107−153. doi: 10.1016/j.quageo.2010.08.003
    [4]
    Birks H H, Gulliksen S, Haflidason H, et al. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway[J]. Quaternary Research, 1996, 45(2): 119−127. doi: 10.1006/qres.1996.0014
    [5]
    Rasmussen S O, Andersen K K, Svensson A M, et al. A new Greenland ice core chronology for the last glacial termination[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D6): D06102.
    [6]
    Heaton T J, Bard E, Bronk Ramsey C, et al. Radiocarbon: a key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun[J]. Science, 2021, 374(6568): abd7096. doi: 10.1126/science.abd7096
    [7]
    Audi G, Bersillon O, Blachot J, et al. The Nubase evaluation of nuclear and decay properties[J]. Nuclear Physics A, 2003, 729(1): 3−128. doi: 10.1016/j.nuclphysa.2003.11.001
    [8]
    Hughes E E, Mann W B. The half-life of carbon-14: comments on the mass-spectrometric method[J]. The International Journal of Applied Radiation and Isotopes, 1964, 15(3): 97−100. doi: 10.1016/0020-708X(64)90038-9
    [9]
    Mangerud J. Radiocarbon dating of marine shells, including a discussion of apparent age of recent shells from Norway[J]. Boreas, 1972, 1(2): 143−172. doi: 10.1111/j.1502-3885.1972.tb00147.x
    [10]
    Alves E Q, Macario K, Ascough P, et al. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects[J]. Reviews of Geophysics, 2018, 56(1): 278−305. doi: 10.1002/2017RG000588
    [11]
    Siani G, Paterne M, Michel E, et al. Mediterranean sea surface radiocarbon reservoir age changes since the last glacial maximum[J]. Science, 2001, 294(5548): 1917−1920. doi: 10.1126/science.1063649
    [12]
    Hua Quan, Webb G E, Zhao Jianxin, et al. Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes[J]. Earth and Planetary Science Letters, 2015, 422: 33−44. doi: 10.1016/j.jpgl.2015.03.049
    [13]
    Sikes E L, Guilderson T P. Southwest Pacific Ocean surface reservoir ages since the last glaciation: circulation insights from multiple‐core studies[J]. Paleoceanography, 2016, 31(2): 298−310. doi: 10.1002/2015PA002855
    [14]
    Skinner L C, Bard E. Radiocarbon as a dating tool and tracer in paleoceanography[J]. Reviews of Geophysics, 2022, 60(1): e2020RG000720. doi: 10.1029/2020RG000720
    [15]
    Siani G, Michel E, De Pol-Holz R, et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation[J]. Nature Communications, 2013, 4(1): 2758. doi: 10.1038/ncomms3758
    [16]
    Austin W E N, Bard E, Hunt J B, et al. The 14C age of the icelandic vedde ash: implications for younger dryas marine reservoir age corrections[J]. Radiocarbon, 1995, 37(1): 53−62. doi: 10.1017/S0033822200014788
    [17]
    Bard E, Arnold M, Mangerud J, et al. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event[J]. Earth and Planetary Science Letters, 1994, 126(4): 275−287. doi: 10.1016/0012-821X(94)90112-0
    [18]
    Muschitiello F, D’Andrea W J, Schmittner A, et al. Deep-water circulation changes lead North Atlantic climate during deglaciation[J]. Nature Communications, 2019, 10(1): 1272. doi: 10.1038/s41467-019-09237-3
    [19]
    Bondevik S, Mangerud J, Gulliksen S. The marine 14C age of the Vedde Ash Bed along the west coast of Norway[J]. Journal of Quaternary Science, 2001, 16(1): 3−7. doi: 10.1002/1099-1417(200101)16:1<3::AID-JQS592>3.0.CO;2-G
    [20]
    Wastegård S. Early to middle Holocene silicic tephra horizons from the Katla volcanic system, Iceland: new results from the Faroe Islands[J]. Journal of Quaternary Science, 2002, 17(8): 723−730. doi: 10.1002/jqs.724
    [21]
    Matthews I P, Birks H H, Bourne A J, et al. New age estimates and climatostratigraphic correlations for the Borrobol and Penifiler Tephras: evidence from Abernethy Forest, Scotland[J]. Journal of Quaternary Science, 2011, 26(3): 247−252. doi: 10.1002/jqs.1498
    [22]
    Mortensen A K, Bigler M, Grönvold K, et al. Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core[J]. Journal of Quaternary Science, 2005, 20(3): 209−219. doi: 10.1002/jqs.908
    [23]
    Koren J H, Svendsen J I, Mangerud J, et al. The Dimna Ash—a 12.814Cka-old volcanic ash in western Norway[J]. Quaternary Science Reviews, 2008, 27(1/2): 85−94.
    [24]
    Bond G C, Mandeville C, Hoffmann S. Were rhyolitic glasses in the Vedde Ash and in the North Atlantic's Ash Zone 1 produced by the same volcanic eruption?[J]. Quaternary Science Reviews, 2001, 20(11): 1189−1199. doi: 10.1016/S0277-3791(00)00146-3
    [25]
    Thornalley D J R, McCave I N, Elderfield H. Tephra in deglacial ocean sediments south of Iceland: Stratigraphy, geochemistry and oceanic reservoir ages[J]. Journal of Quaternary Science, 2011, 26(2): 190−198. doi: 10.1002/jqs.1442
    [26]
    Griggs A J, Davies S M, Abbott P M, et al. Optimising the use of marine tephrochronology in the North Atlantic: a detailed investigation of the Faroe Marine Ash Zones II, III and IV[J]. Quaternary Science Reviews, 2014, 106: 122−139. doi: 10.1016/j.quascirev.2014.04.031
    [27]
    Schindlbeck J C, Kutterolf S, Freundt A, et al. Emplacement processes of submarine volcaniclastic deposits(IODP Site C0011, Nankai Trough)[J]. Marine Geology, 2013, 343: 115−124. doi: 10.1016/j.margeo.2013.06.017
    [28]
    Bard E, Arnold M, Duprat J, et al. Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric 14C dating[J]. Climate Dynamics, 1987, 1(2): 101−112. doi: 10.1007/BF01054479
    [29]
    Bard E. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications[J]. Paleoceanography, 1988, 3(6): 635−645. doi: 10.1029/PA003i006p00635
    [30]
    Hunt J B, Fannin N G T, Hill P G, et al. The tephrochronology and radiocarbon dating of North Atlantic, Late-Quaternary sediments: an example from the St. Kilda Basin[J]. Geological Society, 1995, 90(1): 227−248. doi: 10.1144/GSL.SP.1995.090.01.15
    [31]
    Kvamme T, Mangerud J, Furnes H, et al. Geochemistry of Pleistocene ash zones in cores from the North Atlantic[J]. Norsk Geologisk Tidsskrift, 1989, 69: 251−272.
    [32]
    You Defang, Stein R, Fahl K, et al. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea[J]. Communications Earth & Environment, 2023, 4(1): 81.
    [33]
    Voelker A H L, Haflidason H. Refining the Icelandic tephrachronology of the last glacial period–the deep-sea core PS2644 record from the southern Greenland Sea[J]. Global and Planetary Change, 2015, 131: 35−62. doi: 10.1016/j.gloplacha.2015.05.001
    [34]
    Cook E, Abbott P M, Pearce N J G, et al. Volcanism and the Greenland ice cores: a new tephrochronological framework for the last glacial-interglacial transition(LGIT) based on cryptotephra deposits in three ice cores[J]. Quaternary Science Reviews, 2022, 292: 107596. doi: 10.1016/j.quascirev.2022.107596
    [35]
    Grönvold K, Óskarsson N, Johnsen S J, et al. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments[J]. Earth and Planetary Science Letters, 1995, 135(1/4): 149−155.
    [36]
    Björck S, Ingólfsson Ó, Haflidason H, et al. Lake Torfadalsvatn: a high resolution record of the North Atlantic ash zone I and the last glacial-interglacial environmental changes in Iceland[J]. Boreas, 1992, 21(1): 15−22. doi: 10.1111/j.1502-3885.1992.tb00009.x
    [37]
    Harning D J, Thordarson T, Geirsdóttir Á, et al. Repeated Early Holocene eruptions of Katla, Iceland, limit the temporal resolution of the Vedde Ash[J]. Bulletin of Volcanology, 2024, 86(1): 2.
    [38]
    Risebrobakken B, Jansen E, Andersson C, et al. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas[J]. Paleoceanography, 2003, 18(1): 1017.
    [39]
    Austin W E N, Telford R J, Ninnemann U S, et al. North Atlantic reservoir ages linked to high Younger Dryas atmospheric radiocarbon concentrations[J]. Global and Planetary Change, 2011, 79(3/4): 226−233.
    [40]
    Karpuz N K, Jansen E. A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climatic changes[J]. Paleoceanography, 1992, 7(4): 499−520. doi: 10.1029/92PA01651
    [41]
    Eiríksson J, Knudsen K L, Haflidason H, et al. Late-glacial and Holocene palaeoceanography of the North Icelandic shelf[J]. Journal of Quaternary Science, 2000, 15(1): 23−42. doi: 10.1002/(SICI)1099-1417(200001)15:1<23::AID-JQS476>3.0.CO;2-8
    [42]
    Schoning K. Palaeohydrography and marine conditions in the south-western part of the Vänern basin during the Younger Dryas and Early Preboreal[J]. GFF, 2002, 124(1): 1−10. doi: 10.1080/11035890201241001
    [43]
    Jagan A. Tephra stratigraphy and geochemistry from three Icelandic lake cores: a new method for determining source volcano of tepra layers[D]. Edinburgh: The University of Edinburgh, 2010.
    [44]
    Óladóttir B A, Sigmarsson O, Larsen G, et al. Provenance of basaltic tephra from Vatnajökull subglacial volcanoes, Iceland, as determined by major- and trace-element analyses[J]. The Holocene, 2011, 21(7): 1037−1048. doi: 10.1177/0959683611400456
    [45]
    Haflidason H, Eiriksson J, Van Kreveld S. The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review[J]. Journal of Quaternary Science, 2000, 15(1): 3−22. doi: 10.1002/(SICI)1099-1417(200001)15:1<3::AID-JQS530>3.0.CO;2-W
    [46]
    Ramsey C B, Housley R A, Lane C S, et al. The RESET tephra database and associated analytical tools[J]. Quaternary Science Reviews, 2015, 118: 33−47. doi: 10.1016/j.quascirev.2014.11.008
    [47]
    Stuiver M, Pearson G W, Braziunas T. Radiocarbon age calibration of marine samples back to 9000 cal yr BP[J]. Radiocarbon, 1986, 28(2B): 980−1021. doi: 10.1017/S0033822200060264
    [48]
    Bevington P R, Robinson D K, Blair J M, et al. Data reduction and error analysis for the physical sciences[J]. Computers in Physics, 1993, 7(4): 415−416. doi: 10.1063/1.4823194
    [49]
    Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457−474. doi: 10.1214/ba/1339616472
    [50]
    Carstens J, Hebbeln D, Wefer G. Distribution of planktic foraminifera at the ice margin in the Arctic(Fram Strait)[J]. Marine Micropaleontology, 1997, 29(3/4): 257−269.
    [51]
    Simstich J, Sarnthein M, Erlenkeuser H. Paired δ18O signals of Neogloboquadrina pachyderma(s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas[J]. Marine Micropaleontology, 2003, 48(1/2): 107−125.
    [52]
    Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: results from Global Data Analysis Project(GLODAP)[J]. Global Biogeochemical Cycles, 2004, 18(4): GB4031.
    [53]
    Davies S M, Turney C S M, Lowe J J. Identification and significance of a visible, basalt-rich Vedde Ash layer in a Late-glacial sequence on the Isle of Skye, Inner Hebrides, Scotland[J]. Journal of Quaternary Science, 2001, 16(2): 99−104. doi: 10.1002/jqs.611
    [54]
    Wastegård S, Wohlfarth B, Subetto D A, et al. Extending the known distribution of the Younger Dryas Vedde Ash into northwestern Russia[J]. Journal of Quaternary Science, 2000, 15(6): 581−586. doi: 10.1002/1099-1417(200009)15:6<581::AID-JQS558>3.0.CO;2-3
    [55]
    Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745−750. doi: 10.1093/petrology/27.3.745
    [56]
    Lohne Ø S, Mangerud J, Birks H H. Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology[J]. Journal of Quaternary Science, 2013, 28(5): 490−500. doi: 10.1002/jqs.2640
    [57]
    Zhao Ning. Reconstructing deglacial ocean ventilation using radiocarbon: data and inverse modeling[D]. Woods Hole: Woods Hole Oceanographic Institution, 2017.
    [58]
    Rutledal S. Tephrochronology of the North Atlantic during the Last Glacial period–a paleoclimate synchronization tool[D]. Bergen: University of Bergen, 2021.
    [59]
    Duggen S, Olgun N, Croot P, et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review[J]. Biogeosciences, 2010, 7(3): 827−844. doi: 10.5194/bg-7-827-2010
    [60]
    Bäckström D L, Kuijpers A, Heinemeier J. Late Quaternary North Atlantic paleoceanographic records and stable isotopic bariability four planktonic foraminiferal species[J]. Journal of Foraminiferal Research, 2001, 31(1): 25−32. doi: 10.2113/0310025
    [61]
    Ruddiman W F, Glover L K. Vertical mixing of ice-rafted volcanic ash in North Atlantic Sediments[J]. Geological Society of America Bulletin, 1972, 83(9): 2817−2836. doi: 10.1130/0016-7606(1972)83[2817:VMOIVA]2.0.CO;2
    [62]
    Thordarson T, Larsen G. Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history[J]. Journal of Geodynamics, 2007, 43(1): 118−152. doi: 10.1016/j.jog.2006.09.005
    [63]
    Gudmundsdóttir E R, Larsen G, Eiríksson J. Tephra stratigraphy on the North Icelandic shelf: extending tephrochronology into marine sediments off North Iceland[J]. Boreas, 2012, 41(4): 718−734.
    [64]
    Søndergaard M. Lateglacial and Holocene palaeoclimatic fluctuations on the North Icelandic shelf: foraminiferal analysis, sedimentology and tephrochronology of core MD992275[D]. Aarhus: University of Aarhus, 2005.
    [65]
    Eiríksson J, Larsen G, Knudsen K L, et al. Marine reservoir age variability and water mass distribution in the Iceland Sea[J]. Quaternary Science Reviews, 2004, 23(20/22): 2247−2268.
    [66]
    Lacasse C. Influence of climate variability on the atmospheric transport of Icelandic tephra in the subpolar North Atlantic[J]. Global and Planetary Change, 2001, 29(1/2): 31−55.
    [67]
    Davies S M, Larsen G, Wastegård S, et al. Widespread dispersal of Icelandic tephra: how does the Eyjafjöll eruption of 2010 compare to past Icelandic events?[J]. Journal of Quaternary Science, 2010, 25(5): 605−611. doi: 10.1002/jqs.1421
    [68]
    Saxby J, Rust A, Cashman K, et al. The importance of grain size and shape in controlling the dispersion of the Vedde cryptotephra[J]. Journal of Quaternary Science, 2020, 35(1/2): 175−185.
    [69]
    Dolman A M, Groeneveld J, Mollenhauer G, et al. Estimating bioturbation from replicated small-sample radiocarbon ages[J]. Paleoceanography and Paleoclimatology, 2021, 36(7): 2020PA004142. doi: 10.1029/2020PA004142
    [70]
    Galbraith E D, Kwon E Y, Bianchi D, et al. The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean[J]. Global Biogeochemical Cycles, 2015, 29(3): 307−324. doi: 10.1002/2014GB004929
    [71]
    Alley R B, Clark P U. The deglaciation of the Northern Hemisphere: a global perspective[J]. Annual Review of Earth and Planetary Sciences, 1999, 27: 149−182. doi: 10.1146/annurev.earth.27.1.149
    [72]
    Keigwin L D, Boyle E A. Did North Atlantic overturning halt 17, 000 years ago?[J]. Paleoceanography, 2008, 23(1): PA1101.
    [73]
    Sy A, Rhein M, Lazier J R N, et al. Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean[J]. Nature, 1997, 386(6626): 675−679. doi: 10.1038/386675a0
    [74]
    Stocker T F, Schmittner A. Influence of CO2 emission rates on the stability of the thermohaline circulation[J]. Nature, 1997, 388(6645): 862−865. doi: 10.1038/42224
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (45) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return