Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 47 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
Cheng Lingqiao,Gao Zhaoquan,Kitade Yujiro, et al. Export pathway of Vincennes Bay Bottom Water and its contribution rate in the Antarctic Bottom Water layer[J]. Haiyang Xuebao,2025, 47(3):1–12 doi: 10.12284/hyxb2025019
Citation: Cheng Lingqiao,Gao Zhaoquan,Kitade Yujiro, et al. Export pathway of Vincennes Bay Bottom Water and its contribution rate in the Antarctic Bottom Water layer[J]. Haiyang Xuebao,2025, 47(3):1–12 doi: 10.12284/hyxb2025019

Export pathway of Vincennes Bay Bottom Water and its contribution rate in the Antarctic Bottom Water layer

doi: 10.12284/hyxb2025019
  • Received Date: 2024-11-23
  • Rev Recd Date: 2025-01-10
  • Available Online: 2025-02-11
  • Publish Date: 2025-03-31
  • Based on the hydrographic observations carried out in the austral summer during 2013 and 2015 from the continental shelf to the front regions of Vincennes Bay, East Antarctica, this study utilizes an optimum multiparameter analysis method to evaluate the export pathway of Vincennes Bay Bottom Water (VBBW) and its contribution rate to Antarctic bottom water (AABW). The results show that the freshest, coldest, and most oxygen-rich bottom water is distributed above the northwestern ridge of Vincennes Bay. The highest proportion of local Dense Shelf Water (DSW) on the bottom over this ridge was (28.58 ± 1.75)%, which exceeded the proportion observed at all other stations on the offshore side of the continental slope. The VBBW, a mixture of local DSW and modified Circumpolar Deep Water, was also maximized in the AABW layer on this northwestern ridge. The results suggest that topography plays an important role in guiding the outflow of local DSW and even VBBW, and the northwestern ridge could be the main pathway for VBBW export. In the vertical direction, the proportion of DSW decreases with the shallower depth at most stations, but patchy DSW contribution layers were commonly observed in the sub-bottom layers, which means that the proportion of DSW increases in some depth ranges. According to the anomaly distribution of seawater characteristics on the density surfaces, the DSW in the sub-bottom layers can also be exported along the isopycnals, manifested as thermohaline intrusion patches. These thermohaline intrusion patches have significantly colder, fresher, and oxygen-rich characteristics, which may contribute to the enhancement of sub-bottom ventilation. In addition, VBBW can reach the bottom of the Australia-Antarctic basin at depths deeper than 4000 m but with a limited contribution rate, no more than 17%, and is mainly contributed by mCDW. This study helps understand the export pathway and contribution of bottom water from the medium bay to the bottom layer of the Australia-Antarctic Basin. It provides a reference for further study on the formation and modification of the AABW in this basin.
  • loading
  • [1]
    Speer K, Rintoul S R, Sloyan B. The diabatic deacon cell[J]. Journal of Physical Oceanography, 2000, 30(12): 3212−3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2
    [2]
    Foldvik A, Gammelsrød T, Østerhus S, et al. Ice shelf water overflow and bottom water formation in the southern Weddell Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02015.
    [3]
    Gill A E. Circulation and bottom water production in the Weddell Sea[J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(2): 111−140. doi: 10.1016/0011-7471(73)90048-X
    [4]
    Jacobs S S, Amos A F, Bruchhausen P M. Ross sea oceanography and Antarctic bottom water formation[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(6): 935−962. doi: 10.1016/0011-7471(70)90046-X
    [5]
    Carmack E C. Water characteristics of the Southern Ocean south of the polar front[M]//Angel M. A Vouage of Discovery, Deacon 70th Anniversary Volume. Oxford: Pergam on Press, 1977.
    [6]
    Gordon A L, Tchernia P L. Waters of the continental margin off Adélie coast, Antarctica[M]//Hayes D E. Antarctica Oceanology II: The Australian-New Zealand Sector. Washington: American Geophysical Union, 1978: 59−69.
    [7]
    Rintoul S R. On the origin and influence of Adélie Land Bottom Water[M]//Jacobs S S, Weiss R F. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin 75. Washington: American Geophysical Union, 1985: 151−171.
    [8]
    Williams G D, Aoki S, Jacobs S S, et al. Antarctic bottom water from the Adélie and George V Land coast, East Antarctica (140°−149°E)[J]. Journal of Geophysical Research: Oceans, 2010, 115(C4): C04027.
    [9]
    Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738
    [10]
    Orsi A H, Jacobs S S, Gordon A L, et al. Cooling and ventilating the abyssal ocean[J]. Geophysical Research Letters, 2001, 28(15): 2923−2926. doi: 10.1029/2001GL012830
    [11]
    Williams G D, Bindoff N L, Marsland S J, et al. Formation and export of dense shelf water from the Adélie Depression, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4): C04039.
    [12]
    Williams G D, Hindell M, Houssais M N, et al. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica[J]. Ocean Science, 2011, 7(2): 185−202. doi: 10.5194/os-7-185-2011
    [13]
    Bindoff N L, Rosenberg M A, Warner M J. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(12/13): 2299−2326.
    [14]
    Budillon G, Spezie G. Thermohaline structure and variability in the Terra Nova Bay polynya, Ross Sea[J]. Antarctic Science, 2000, 12(4): 493−508. doi: 10.1017/S0954102000000572
    [15]
    Kitade Y, Shimada K, Tamura T, et al. Antarctic bottom water production from the Vincennes bay Polynya, East Antarctica[J]. Geophysical Research Letters, 2014, 41(10): 3528−3534. doi: 10.1002/2014GL059971
    [16]
    Tamura T, Ohshima K I, Fraser A D, et al. Sea ice production variability in Antarctic coastal polynyas[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 2967−2979. doi: 10.1002/2015JC011537
    [17]
    Ye Wenjun, Cheng Lingqiao, Kitade Y, et al. Distribution of modified circumpolar deep water and its threat in Vincennes Bay, East Antarctica[J]. Journal of Oceanology and Limnology, 2024, 42(5): 1399−1414. doi: 10.1007/s00343-024-3164-3
    [18]
    Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X
    [19]
    Aoki S, Rintoul S R, Ushio S, et al. Freshening of the Adélie Land Bottom Water near 140°E[J]. Geophysical Research Letters, 2005, 32(23): L23601.
    [20]
    Aoki S, Kitade Y, Shimada K, et al. Widespread freshening in the Seasonal Ice Zone near 140°E off the Adélie Land Coast, Antarctica, from 1994 to 2012[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 6046−6063. doi: 10.1002/2013JC009009
    [21]
    Rintoul S R. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans[J]. Geophysical Research Letters, 2007, 34(6): L06606.
    [22]
    Purkey S G, Johnson G C. Global contraction of Antarctic bottom water between the 1980s and 2000s[J]. Journal of Climate, 2012, 25(17): 5830−5844. doi: 10.1175/JCLI-D-11-00612.1
    [23]
    van Wijk E M, Rintoul S R. Freshening drives contraction of Antarctic bottom water in the Australian Antarctic Basin[J]. Geophysical Research Letters, 2014, 41(5): 1657−1664. doi: 10.1002/2013GL058921
    [24]
    Menezes V V, Macdonald A M, Schatzman C. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean[J]. Science Advances, 2017, 3(1): e1601426. doi: 10.1126/sciadv.1601426
    [25]
    Shimada K, Kitade Y, Aoki S, et al. Shoaling of abyssal ventilation in the Eastern Indian Sector of the Southern Ocean[J]. Communications Earth & Environment, 2022, 3(1): 120.
    [26]
    Shimada K, Aoki S, Ohshima K I, et al. Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin[J]. Ocean Science, 2012, 8(4): 419−432. doi: 10.5194/os-8-419-2012
    [27]
    Katsumata K, Nakano H, Kumamoto Y. Dissolved oxygen change and freshening of Antarctic Bottom water along 62°S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 114: 27−38. doi: 10.1016/j.dsr2.2014.05.016
    [28]
    Mizobata K, Shimada K, Aoki S, et al. The cyclonic eddy train in the Indian Ocean sector of the Southern Ocean as revealed by satellite radar altimeters and in situ measurements[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015994. doi: 10.1029/2019JC015994
    [29]
    Nihashi S, Ohshima K I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability[J]. Journal of Climate, 2015, 28(9): 3650−3670. doi: 10.1175/JCLI-D-14-00369.1
    [30]
    Joyce T M. Introduction to the collection of expert reports compiled for the WHP programme[R]. WHP, 1991.
    [31]
    Shimada K, Makabe R, Takao S, et al. Physical and chemical oceanographic data during Umitaka-maru cruise of the 58th Japanese Antarctic Research Expedition in January 2017[J]. Polar Data Journal, 2020, 4: 1−29.
    [32]
    Hood E M, Sabine C L, Sloyan B M. The GO-SHIP repeat hydrography manual: a collection of expert reports and guidelines[R]. IOCCP Report, 2010.
    [33]
    Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: National Oceanic and Atmospheric Administration, 2009.
    [34]
    Thompson R O R Y, Edwards R J. Mixing and water-mass formation in the Australian Subantarctic[J]. Journal of Physical Oceanography, 1981, 11(10): 1399−1406. doi: 10.1175/1520-0485(1981)011<1399:MAWMFI>2.0.CO;2
    [35]
    Jackett D R, McDougall T J. A neutral density variable for the world’s oceans[J]. Journal of Physical Oceanography, 1997, 27(2): 237−263. doi: 10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2
    [36]
    Tomczak M, Large D G B. Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1989, 94(C11): 16141−16149. doi: 10.1029/JC094iC11p16141
    [37]
    Yamazaki K, Katsumata K, Hirano D, et al. Revisiting circulation and water masses over the East Antarctic margin (80–150°E)[J]. Progress in Oceanography, 2024, 225: 103285. doi: 10.1016/j.pocean.2024.103285
    [38]
    Mizuta G, Ohshima K I, Takatsuka T, et al. Circulation and production of Cape Darnley Bottom Water on the continental slope off the Cape Darnley polynya, East Antarctica[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 211: 104362. doi: 10.1016/j.dsr.2024.104362
    [39]
    Shimada K, Aoki S, Ohshima K I. Creation of a gridded dataset for the Southern Ocean with a topographic constraint scheme[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(3): 511−532. doi: 10.1175/JTECH-D-16-0075.1
    [40]
    Woods J D, Onken R, Fischer J. Thermohaline intrusions created isopycnically at oceanic fronts are inclined to isopycnals[J]. Nature, 1986, 322(6078): 446−449. doi: 10.1038/322446a0
    [41]
    Ruddick B, Richards K. Oceanic thermohaline intrusions: observations[J]. Progress in Oceanography, 2003, 56(3/4): 499−527.
    [42]
    Ruddick B. A practical indicator of the stability of the water column to double-diffusive activity[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1983, 30(10): 1105−1107. doi: 10.1016/0198-0149(83)90063-8
    [43]
    Shcherbina A Y, Gregg M C, Alford M H, et al. Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone[J]. Journal of Physical Oceanography, 2009, 39(11): 2735−2756. doi: 10.1175/2009JPO4190.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (99) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return