Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Fu Nannan,Ren Chunping. Evolution characteristics of surf zone eddies in a strong alongshore current[J]. Haiyang Xuebao,2025, 47(2):1–13 doi: 10.12284/hyxb2025017
Citation: Fu Nannan,Ren Chunping. Evolution characteristics of surf zone eddies in a strong alongshore current[J]. Haiyang Xuebao,2025, 47(2):1–13 doi: 10.12284/hyxb2025017

Evolution characteristics of surf zone eddies in a strong alongshore current

doi: 10.12284/hyxb2025017
  • Received Date: 2024-11-03
  • Rev Recd Date: 2025-01-06
  • Available Online: 2025-04-18
  • The surf zone eddies play a vital role in material transport, coastal morphology, and ecological environment. However, the formation mechanisms and evolution characteristics of surf zone eddies, especially their spatiotemporal evolution under strong wave-induced currents, remain insufficiently understood. This study integrates pollutant tracer experiments and numerical simulations using the Funwave model based on the Boussinesq equations to investigate the evolution of surf zone eddies under strong wave-driven currents. The experimental results demonstrate that large eddy patches form both onshore and offshore within the surf zone under strong wave-induced currents, exhibiting transient behavior. Onshore eddies are constrained by the shoreline, whereas offshore eddies gradually expand and migrate seaward. The numerical simulations indicate that strong eddies concentrate near the breaking line, with the surf zone eddy field characterized by upstream and downstream shear zones, both exhibiting similar alongshore spacing and eddy structures. Vorticity positively correlates with wave height and period, and the stronger eddies are shifted to the seaward side. Under irregular wave conditions, vorticity decreases, accompanied by a shoreward shift in the locations of maximum vorticity.
  • loading
  • [1]
    邹志利. 海岸动力学[M]. 4版. 北京: 人民交通出版社, 2009.

    Zou Zhili. Coastal Hydrodynamics[M]. 4th ed. Beijing: China Communications Press, 2009.
    [2]
    Reniers A J H M, Battjes J A, Falqués A, et al. A laboratory study on the shear instability of longshore currents[J]. Journal of Geophysical Research: Oceans, 1997, 102(C4): 8597−8609. doi: 10.1029/96JC03863
    [3]
    Feddersen F, Clark D B, Guza R T. Modeling surf zone tracer plumes: 1. Waves, mean currents, and low-frequency eddies[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11027.
    [4]
    Li Shuo, Li Wenxin, Shi Huabin, et al. Hydrodynamics and sediment transport under solitary waves in the swash zone[J]. Journal of Marine Science Engineering, 2024, 12(9): 1686. doi: 10.3390/jmse12091686
    [5]
    Clark D B, Feddersen F, Guza R T. Cross-shore surfzone tracer dispersion in an alongshore current[J]. Journal of Geophysical Research: Oceans, 2010, 115(C10): C10035.
    [6]
    Clark D B, Feddersen F, Guza R T. Modeling surf zone tracer plumes: 2. Transport and dispersion[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11028.
    [7]
    Spydell M S, Feddersen F, Guza R T. Observations of drifter dispersion in the surfzone: the effect of sheared alongshore currents[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07028.
    [8]
    Suanda S H, Feddersen F. A self-similar scaling for cross-shelf exchange driven by transient rip currents[J]. Geophysical Research Letters, 2015, 42(13): 5427−5434. doi: 10.1002/2015GL063944
    [9]
    Rilov G, Dudas S E, Menge B A, et al. The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae?[J]. Journal of Experimental Marine Biology and Ecology, 2008, 361(2): 59−74. doi: 10.1016/j.jembe.2008.04.008
    [10]
    Shanks A L, Morgan S G, MacMahan J, et al. Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment[J]. Journal of Experimental Marine Biology and Ecology, 2010, 392(1/2): 140−150.
    [11]
    Feddersen F. The generation of surfzone eddies in a strong alongshore current[J]. Journal of Physical Oceanography, 2014, 44(2): 600−617. doi: 10.1175/JPO-D-13-051.1
    [12]
    Brown J A, MacMahan J H, Reniers A J H M, et al. Observations of mixing and transport on a steep beach[J]. Continental Shelf Research, 2019, 178: 1−14. doi: 10.1016/j.csr.2019.03.009
    [13]
    Castelle B, Almar R, Dorel M, et al. Rip currents and circulation on a high-energy low-tide-terraced beach (Grand Popo, Benin, West Africa)[J]. Journal of Coastal Research, 2014, 70: 633−638. doi: 10.2112/SI70-107.1
    [14]
    Long J W, Özkan-Haller H T. Low-frequency characteristics of wave group–forced vortices[J]. Journal of Geophysical Research: Oceans, 2009, 114(C8): C08004.
    [15]
    Choi J, Kirby J T, Yoon S B. Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions[J]. Coastal Engineering, 2015, 101: 17−34. doi: 10.1016/j.coastaleng.2015.04.005
    [16]
    Bowen A J, Holman R A. Shear instabilities of the mean longshore current: 1. Theory[J]. Journal of Geophysical Research: Oceans, 1989, 94(C12): 18023−18030. doi: 10.1029/JC094iC12p18023
    [17]
    Oltman-Shay J, Howd P A, Birkemeier W A. Shear instabilities of the mean longshore current: 2. Field observations[J]. Journal of Geophysical Research: Oceans, 1989, 94(C12): 18031−18042. doi: 10.1029/JC094iC12p18031
    [18]
    Reniers A J H M, MacMahan J H, Thornton E B, et al. Surf zone surface retention on a rip-channeled beach[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10): C10010.
    [19]
    Noyes T J, Guza R T, Elgar S, et al. Field observations of shear waves in the surf zone[J]. Journal of Geophysical Research: Oceans, 2004, 109(C1): C01031.
    [20]
    Zhang Xuan, Simons R, Zheng Jinhai, et al. A review of the state of research on wave-current interaction in nearshore areas[J]. Ocean Engineering, 2022, 243: 110202. doi: 10.1016/j.oceaneng.2021.110202
    [21]
    Noyes T J, Guza R T, Feddersen F, et al. Model-data comparisons of shear waves in the nearshore[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05019.
    [22]
    Zhang Yu, Shi Fengyan, Kirby J T, et al. Phase-resolved modeling of wave interference and its effects on nearshore circulation in a large ebb shoal-beach system[J]. Journal of Geophysical Research: Oceans, 2022, 127(10): e2022JC018623. doi: 10.1029/2022JC018623
    [23]
    Boffetta G, Ecke R E. Two-dimensional turbulence[J]. Annual Review of Fluid Mechanics, 2012, 44: 427−451. doi: 10.1146/annurev-fluid-120710-101240
    [24]
    Clark D B, Elgar S, Raubenheimer B. Vorticity generation by short-crested wave breaking[J]. Geophysical Research Letters, 2012, 39(24): L24604.
    [25]
    Baker C M, Moulton M, Chickadel C C, et al. Two-dimensional inverse energy cascade in a laboratory surf zone for varying wave directional spread[J]. Physics of Fluids, 2023, 35(12): 125140. doi: 10.1063/5.0169895
    [26]
    Baker C M. Surfzone vorticity dynamics in a directional wave basin[D]. Washington: University of Washington, 2023.
    [27]
    Elgar S, Raubenheimer B. Field evidence of inverse energy cascades in the surfzone[J]. Journal of Physical Oceanography, 2020, 50(8): 2315−2321. doi: 10.1175/JPO-D-19-0327.1
    [28]
    Elgar S, Dooley C, Gorrell L, et al. Observations of two-dimensional turbulence in the surfzone[J]. Physics of Fluids, 2023, 35(8): 085142. doi: 10.1063/5.0159170
    [29]
    Xia H, Francois N. Two-dimensional turbulence in three-dimensional flows[J]. Physics of Fluids, 2017, 29(11): 111107. doi: 10.1063/1.5000863
    [30]
    Colombi R, Schlüter M, von Kameke A. Three dimensional flows beneath a thin layer of 2D turbulence induced by Faraday waves[J]. Experiments in Fluids, 2021, 62(1): 8. doi: 10.1007/s00348-020-03099-y
    [31]
    Baker C M, Moulton M, Chickadel C C, et al. Wave breaking eddies and transient rip current dynamics in large-scale wave basin experiments[C]// 9th International Conference on Physical Modelling in Coastal Engineering. Delft: Delft University of Technology, 2024.
    [32]
    Spydell M S. The suppression of surfzone cross-shore mixing by alongshore currents[J]. Geophysical Research Letters, 2016, 43(18): 9781−9790. doi: 10.1002/2016GL070626
    [33]
    Bondehagen A, Roeber V, Kalisch H, et al. Wave-driven current and vortex patterns at an open beach: insights from phase-resolving numerical computations and Lagrangian measurements[J]. Coastal Engineering, 2024, 193: 104591. doi: 10.1016/j.coastaleng.2024.104591
    [34]
    Baker C M, Moulton M, Raubenheimer B, et al. Modeled three-dimensional currents and eddies on an alongshore-variable barred beach[J]. Journal of Geophysical Research: Oceans, 2021, 126(7): e2020JC016899. doi: 10.1029/2020JC016899
    [35]
    Zheng Jinhai, Yao Yu, Chen Songhui, et al. Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system[J]. Coastal Engineering, 2020, 162: 103772. doi: 10.1016/j.coastaleng.2020.103772
    [36]
    任春平. 沿岸流不稳定运动的实验研究及理论分析[D]. 大连: 大连理工大学, 2009.

    Ren Chunping. A laboratory study and theoretical analysis on the instabilities of alongshore currents[D]. Dalian: Dalian University of Technology, 2009.
    [37]
    Chen Qin, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of longshore currents[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 26.
    [38]
    Hally-Rosendahl K, Feddersen F. Modeling surfzone to inner-shelf tracer exchange[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4007−4025. doi: 10.1002/2015JC011530
    [39]
    Kennedy A B, Chen Qin, Kirby J T, et al. Boussinesq modeling of wave transformation, breaking, and runup. I: 1D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 39−47. doi: 10.1061/(ASCE)0733-950X(2000)126:1(39)
    [40]
    Wei Ge, Kirby J T, Sinha A. Generation of waves in Boussinesq models using a source function method[J]. Coastal Engineering, 1999, 36(4): 271−299. doi: 10.1016/S0378-3839(99)00009-5
    [41]
    李绍武, 黄筱云. 用Boussinesq方程计算沿岸流的数值方法[J]. 天津大学学报, 2004, 37(12): 1059−1062. doi: 10.3969/j.issn.0493-2137.2004.12.005

    Li Shaowu, Huang Xiaoyun. Numerical method for calculation of longshore current by using Boussinesq equations[J]. Journal of Tianjin University, 2004, 37(12): 1059−1062. doi: 10.3969/j.issn.0493-2137.2004.12.005
    [42]
    王国玉, 张琪, 赵银林. 不规则波作用下沿岸流流速分布规律分析[J]. 海洋工程, 2021, 39(3): 11−20.

    Wang Guoyu, Zhang Qi, Zhao Yinlin. Analysis of alongshore current velocity generated by irregular waves[J]. The Ocean Engineering, 2021, 39(3): 11−20.
    [43]
    O’Dea A, Kumar N, Haller M C. Simulations of the surf zone eddy field and cross-shore exchange on a nonidealized bathymetry[J]. Journal of Geophysical Research: Oceans, 2021, 126(5): e2020JC016619. doi: 10.1029/2020JC016619
    [44]
    Spydell M S, Feddersen F, Suanda S. Inhomogeneous turbulent dispersion across the nearshore induced by surfzone eddies[J]. Journal of Physical Oceanography, 2019, 49(4): 1015−1034. doi: 10.1175/JPO-D-18-0102.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (12) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return