Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Zhong Guorong,Li Xuegang,Song Jinming, et al. Machine Learning-Based Bias Correction Method for Ocean Buoy Sensor Observations[J]. Haiyang Xuebao,2025, 47(x):1–9 doi: 10.12284/hyxb2025000
Citation: Zhong Guorong,Li Xuegang,Song Jinming, et al. Machine Learning-Based Bias Correction Method for Ocean Buoy Sensor Observations[J]. Haiyang Xuebao,2025, 47(x):1–9 doi: 10.12284/hyxb2025000

Machine Learning-Based Bias Correction Method for Ocean Buoy Sensor Observations

doi: 10.12284/hyxb2025000
  • Received Date: 2025-07-08
  • Rev Recd Date: 2025-08-13
  • Available Online: 2025-08-21
  • Ocean buoy observations serve as a vital means of acquiring data for marine research. However, direct measurements from buoys are subject to significant biases induced by factors such as sensor baseline drift, biofouling, and seawater corrosion, necessitating rigorous bias correction to ensure data reliability. While numerous quality control (QC) schemes for physical oceanographic parameters from buoy data have been extensively studied and reported, robust and practical sensor QC measures for more complex and variable chemical parameters remain lacking. To address this gap, this study analyzed 90-day laboratory monitoring data for parameters including dissolved oxygen, chlorophyll concentration, pH, and partial pressure of CO2 (pCO2). The analysis revealed that the drift bias in these monitored parameters exhibits a strong linear correlation with fundamental sensor parameters such as conductivity and sensor output voltage and with biological factors to varying degrees. Building upon these findings, we developed a drift bias correction method based on machine learning algorithm to fit the nonlinear relationships between drift bias and fundamental sensor parameters. This method effectively validates buoy sensor data for chemical parameters. Application of this method to observational data across different parameters significantly reduces the deviation between drifted data and true values. It thus provides a novel QC approach for achieving sustained, stable, and high-quality acquisition of marine chemical parameter data from buoy observations.
  • loading
  • [1]
    王军成. 国内外海洋资料浮标技术现状与发展[J]. 海洋技术, 1998, 17(1): 9−15.

    Wang Juncheng. On the current situation and trend about ocean data buoy at home and abroad[J]. Ocean Technology, 1998, 17(1): 9−15.
    [2]
    Roemmich D, Johnson G C, Riser S, et al. The Argo program: observing the global ocean with profiling floats[J]. Oceanography, 2009, 22(2): 34−43. doi: 10.5670/oceanog.2009.36
    [3]
    王军成, 厉运周. 我国海洋资料浮标技术的发展与应用[J]. 山东科学, 2019, 32(5): 1−20. doi: 10.3976/j.issn.1002-4026.2019.05.001

    Wang Juncheng, Li Yunzhou. Development and application of ocean data buoy technology in China[J]. Shandong Science, 2019, 32(5): 1−20. doi: 10.3976/j.issn.1002-4026.2019.05.001
    [4]
    Oka E, Ando K. Stability of temperature and conductivity sensors of Argo profiling floats[J]. Journal of Oceanography, 2004, 60(2): 253−258. doi: 10.1023/B:JOCE.0000038331.10108.79
    [5]
    Hall C, Jensen R E. USACE coastal and hydraulics laboratory quality controlled, consistent measurement archive[J]. Scientific Data, 2022, 9(1): 248. doi: 10.1038/s41597-022-01344-z
    [6]
    Stoer A C, Takeshita Y, Maurer T L, et al. A census of quality-controlled Biogeochemical-Argo float measurements[J]. Frontiers in Marine Science, 2023, 10: 1233289. doi: 10.3389/fmars.2023.1233289
    [7]
    Gaillard F, Autret E, Thierry V, et al. Quality control of large Argo datasets[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(2): 337−351. doi: 10.1175/2008JTECHO552.1
    [8]
    Bliss A C, Hutchings J K, Watkins D M. Sea ice drift tracks from autonomous buoys in the MOSAiC distributed network[J]. Scientific Data, 2023, 10(1): 403. doi: 10.1038/s41597-023-02311-y
    [9]
    Jiang Sha, Chen Yonghua, Liu Qingkui. Advancements in buoy wave data processing through the application of the Sage–Husa adaptive Kalman filtering algorithm[J]. Sensors, 2023, 23(16): 7298. doi: 10.3390/s23167298
    [10]
    Wong A P S, Johnson G C, Owens W B. Delayed-mode calibration of autonomous CTD profiling float salinity data by θ–S climatology[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(2): 308−318. doi: 10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2
    [11]
    Owens W B, Wong A P S. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ–S climatology[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(3): 450−457. doi: 10.1016/j.dsr.2008.09.008
    [12]
    雷发美, 万艳, 商少平, 等. 海洋浮标表层环境要素质控流程和方法的研究[J]. 海洋技术学报, 2022, 41(4): 10−25.

    Lei Famei, Wan Yan, Shang Shaoping, et al. Research on quality control process and method for surface environmental elements of marine buoy[J]. Journal of Ocean Technology, 2022, 41(4): 10−25.
    [13]
    Hansen D V, Poulain P M. Quality control and interpolations of WOCE-TOGA drifter data[J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(4): 900−909. doi: 10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2
    [14]
    Bushnell M. Quality assurance/quality control of real-time oceanographic data[C]//OCEANS 2015 - MTS/IEEE Washington. Washington: IEEE, 2015: 1−4.
    [15]
    张斌, 冯立强, 王彦俊, 等. 长江口06号大型综合观测浮标2014~2015年观测数据集[J]. 中国科学数据(中英文网络版), 2017, 2(1): 95−102.

    Zhang Bin, Feng Liqiang, Wang Yanjun, et al. A dataset of No. 6 large-scale integrated observation buoy on the Yangtze estuary(2014-2015)[J]. China Scientific Data, 2017, 2(1): 95−102.
    [16]
    卢勇夺, 王朝阳, 王豹, 等. 我国海洋锚系浮标数据异常值检测方法研究——以QF110和QF306为例[J]. 海洋预报, 2019, 36(6): 37−43.

    Lu Yongduo, Wang Zhaoyang, Wang Bao, et al. Research on outlier detection method for marine anchor buoys in China, using QF110 and QF306 as an example[J]. Marine Forecasts, 2019, 36(6): 37−43.
    [17]
    Maurer T L, Plant J N, Johnson K S. Delayed-mode quality control of oxygen, nitrate, and pH data on SOCCOM biogeochemical profiling floats[J]. Frontiers in Marine Science, 2021, 8: 683207. doi: 10.3389/fmars.2021.683207
    [18]
    Li Shuo, Wang Bin, Deng Zeng’an, et al. Data quality control method of a new drifting observation technology named drifting air-sea interface buoy[J]. Journal of Ocean University of China, 2024, 23(1): 11−22. doi: 10.1007/s11802-024-5426-2
    [19]
    Takeshita Y, Martz T R, Johnson K S, et al. A climatology-based quality control procedure for profiling float oxygen data[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5640−5650. doi: 10.1002/jgrc.20399
    [20]
    Udaya Bhaskar T V S, Venkat Shesu R, Boyer T P, et al. Quality control of oceanographic in situ data from Argo floats using climatological convex hulls[J]. MethodsX, 2017, 4: 469−479. doi: 10.1016/j.mex.2017.11.007
    [21]
    谭哲韬, 张斌, 吴晓芬, 等. 海洋观测数据质量控制技术研究现状及展望[J]. 中国科学: 地球科学, 2022, 52(3): 418−437.

    Tan Zhetao, Zhang Bin, Wu Xiaofen, et al. Research status and prospects of quality control technology for ocean observation data[J]. Scientia Sinica (Terrae), 2022, 52(3): 418−437. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认)
    [22]
    Organelli E, Claustre H, Bricaud A, et al. A novel near-real-time quality-control procedure for radiometric profiles measured by bio-Argo floats: protocols and performances[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(5): 937−951. doi: 10.1175/JTECH-D-15-0193.1
    [23]
    Petrenko B, Ignatov A, Pryamitsyn V, et al. Towards improved quality control of in situ sea surface temperatures from drifting and moored buoys in the NOAA iQuam system[J]. Applied Sciences, 2023, 13(18): 10205. doi: 10.3390/app131810205
    [24]
    Wimart-Rousseau C, Steinhoff T, Klein B, et al. Technical note: Enhancement of float-pH data quality control methods: a study case in the Subpolar Northwest Atlantic region[J]. Biogeosciences Discussions, 2023, 2023: 1−26. (查阅网上资料, 未找到卷期页码信息, 请确认)
    [25]
    Song Miaomiao, Gao Saiyu, Liu Shixuan, et al. Intelligent quality control method for marine buoy data based on transformer encoder and BiLSTM[J]. Frontiers in Marine Science, 2025, 12: 1528587. doi: 10.3389/fmars.2025.1528587
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (55) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return