Citation: | Cai Chang,Chen Dan,Cai Lei. Multi-AUV multi-regional coverage path planning based on coevolution[J]. Haiyang Xuebao,2024, 46(11):115–124 doi: 10.12284/hyxb2024132 |
[1] |
周晶, 司玉林, 林渊, 等. 海底AUV关键技术综述[J]. 海洋学报, 2023, 45(10): 1−12.
Zhou Jing, Si Yulin, Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao, 2023, 45(10): 1−12.
|
[2] |
Cai Chang, Chen Jianfeng, Yan Qingli, et al. A prior information–based coverage path planner for underwater search and rescue using autonomous underwater vehicle (AUV) with side–scan sonar[J]. IET Radar, Sonar & Navigation, 2022, 16(7): 1225-1239.
|
[3] |
黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215−231.
Huang Yan, Li Yan, Yu Jiancheng, et al. State-of-the-art and development trends of AUV intelligence[J]. Robot, 2020, 42(2): 215−231.
|
[4] |
Matos A, Martins A, Dias A, et al. Multiple robot operations for maritime search and rescue in euRathlon 2015 competition[C]//Proceedings of the OCEANS 2016 - Shanghai. Shanghai: IEEE, 2016.
|
[5] |
朱大奇, 胡震. 深海潜水器研究现状与展望[J]. 安徽师范大学学报(自然科学版), 2018, 41(3): 205−216.
Zhu Daqi, Hu Zhen. Research status and prospect of deep-sea underwater vehicle[J]. Journal of Anhui Normal University (Natural Science), 2018, 41(3): 205−216.
|
[6] |
Ai Bo, Jia Maoxin, Xu Hanwen, et al. Coverage path planning for maritime search and rescue using reinforcement learning[J]. Ocean Engineering, 2021, 241: 110098.
|
[7] |
Song Junnan, Gupta S. CARE: cooperative autonomy for resilience and efficiency of robot teams for complete coverage of unknown environments under robot failures[J]. Autonomous Robots, 2020, 44(3/4): 647−671.
|
[8] |
Sun Chun, Tang Jingtao, Zhang Xinyu. FT-MSTC*: an efficient fault tolerance algorithm for multi-robot coverage path planning[C]//Proceedings of 2021 IEEE International Conference on Real-time Computing and Robotics. Xining: IEEE, 2021.
|
[9] |
Yazici A, Kirlik G, Parlaktuna O, et al. A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints[J]. IEEE Transactions on Cybernetics, 2014, 44(3): 305−314.
|
[10] |
Xie Junfei, Carrillo L R G, Jin Lei. An integrated traveling salesman and coverage path planning problem for unmanned aircraft systems[J]. IEEE Control Systems Letters, 2019, 3(1): 67−72. doi: 10.1109/LCSYS.2018.2851661
|
[11] |
Xie Junfei, Chen Jun. Multiregional coverage path planning for multiple energy constrained UAVs[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17366−17381. doi: 10.1109/TITS.2022.3160402
|
[12] |
Kim G. Multi-agent deep reinforcement learning for multi-regional coverage path planning[D]. Ulsan: Ulsan National Institute of Science and Technology, 2022.
|
[13] |
Shao Xianxin, Gong Yuejiao, Zhan Zhihui, et al. Bipartite cooperative coevolution for energy-aware coverage path planning of UAVs[J]. IEEE Transactions on Artificial Intelligence, 2022, 3(1): 29−42. doi: 10.1109/TAI.2021.3103143
|
[14] |
金磊磊, 梁红, 杨长生. 基于卷积神经网络的水下目标声呐图像识别方法[J]. 西北工业大学学报, 2021, 39(2): 285−291. doi: 10.1051/jnwpu/20213920285
Jin Leilei, Liang Hong, Yang Changsheng. Sonar image recognition of underwater target based on convolutional neural network[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 285−291. doi: 10.1051/jnwpu/20213920285
|
[15] |
Zhou Hexiong, Zeng Zheng, Lian Lian. Adaptive re-planning of AUVs for environmental sampling missions: a fuzzy decision support system based on multi-objective particle swarm optimization[J]. International Journal of Fuzzy Systems, 2018, 20(2): 650−671. doi: 10.1007/s40815-017-0398-7
|
[16] |
Viet H H, Dang V H, Choi S, et al. BoB: an online coverage approach for multi-robot systems[J]. Applied Intelligence, 2015, 42(2): 157−173. doi: 10.1007/s10489-014-0571-8
|
[17] |
Kapoutsis A C, Chatzichristofis S A, Kosmatopoulos E B. DARP: divide areas algorithm for optimal multi-robot coverage path planning[J]. Journal of Intelligent & Robotic Systems, 2017, 86(3/4): 663−680.
|
[18] |
Connell D, Manh La H. Extended rapidly exploring random tree–based dynamic path planning and replanning for mobile robots[J]. International Journal of Advanced Robotic Systems, 2018, 15(3): 255903605.
|
[19] |
赵荞荞, 张立川, 刘禄, 等. 水下仿生机器人集群节能关键技术综述[J]. 西北工业大学学报, 2022, 40(3): 576−583. doi: 10.3969/j.issn.1000-2758.2022.03.013
Zhao Qiaoqiao, Zhang Lichuan, Liu Lu, et al. Review on energy-saving key technologies of underwater bionic robot swarm[J]. Journal of Northwestern Polytechnical University, 2022, 40(3): 576−583. doi: 10.3969/j.issn.1000-2758.2022.03.013
|
[20] |
Choset H. Coverage of known spaces: the boustrophedon cellular decomposition[J]. Autonomous Robots, 2000, 9(3): 247−253. doi: 10.1023/A:1008958800904
|
[21] |
Galceran E, Carreras M. A survey on coverage path planning for robotics[J]. Robotics and Autonomous Systems, 2013, 61(12): 1258−1276.
|
[22] |
Kapetanović N, Mišković N, Tahirović A, et al. A side-scan sonar data-driven coverage planning and tracking framework[J]. Annual Reviews in Control, 2018, 46: 268−280. doi: 10.1016/j.arcontrol.2018.10.012
|
[23] |
Lakshmi M D, Murugan S S. Keypoint-based mapping analysis on transformed side scan sonar images[J]. Multimedia Tools and Applications, 2020, 79(35/36): 26703−26733.
|
[24] |
Wu Meng, Zhu Xiaomin, Ma Li, et al. Torch: strategy evolution in swarm robots using heterogeneous–homogeneous coevolution method[J]. Journal of Industrial Information Integration, 2022, 25: 100239.
|
[25] |
Miguel Antonio L, Coello Coello C A. Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(6): 851−865. doi: 10.1109/TEVC.2017.2767023
|
[26] |
Wang Boqun, Zhang Hailong, Nie Jun, et al. Multipopulation genetic algorithm based on GPU for solving TSP problem[J]. Mathematical Problems in Engineering, 2020, 2020: 1398595.
|