Citation: | Zhang Xiaozhi,Fang Wei,Wang Haoxi. ENSO prediction based on Swin-Transformer and spatio-temporal fusion attention mechanism[J]. Haiyang Xuebao,2024, 46(12):111–121 doi: 10.12284/hyxb2024127 |
[1] |
石世玮, 智海, 林鹏飞, 等. 热带太平洋盐度年际变化对海表温度异常作用比较: 1997/1998、2014/2015和2015/2016年El Niño事件[J]. 大气科学, 2020, 44(5): 1057−1075.
Shi Shiwei, Zhi Hai, Lin Pengfei, et al. Contrasting salinity interannual variations in the tropical pacific and their effects on recent El Niño events: 1997/1998, 2014/2015, and 2015/2016[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(5): 1057−1075.
|
[2] |
祁莉, 毛欣, 张文君. 北太平洋海温Victoria模态与ENSO年际关系的非对称特征[J]. 大气科学学报, 2022, 45(2): 280−291.
Qi Li, Mao Xin, Zhang Wenjun. Asymmetric characteristics of interannual relationship between Victoria mode of North Pacific SST and ENSO[J]. Transactions of Atmospheric Sciences, 2022, 45(2): 280−291.
|
[3] |
万云霞, 晏红明, 金燕, 等. 两次不同ENSO背景下云南冬季极端冷事件的成因分析[J]. 大气科学学报, 2023, 46(4): 575−586.
Wan Yunxia, Yan Hongming, Jin Yan, et al. Causes of two extremely cold events in Yunnan during different ENSO events[J]. Transactions of Atmospheric Sciences, 2023, 46(4): 575−586.
|
[4] |
Zhang Ronghua, Zhou Lu, Gao Chuan, et al. A transformer-based coupled ocean-atmosphere model for ENSO studies[J]. Science Bulletin, 2024, 69(15): 2323−2327. doi: 10.1016/j.scib.2024.04.048
|
[5] |
Wang Gaige, Cheng Honglei, Zhang Yiming, et al. ENSO analysis and prediction using deep learning: a review[J]. Neurocomputing, 2023, 520: 216−229. doi: 10.1016/j.neucom.2022.11.078
|
[6] |
Cai Wenju, Santoso A, Gollins M, et al. Changing El Niño-Southern Oscillation in a warming climate[J]. Nature Reviews Earth & Environment, 2021, 2(9): 628−644.
|
[7] |
Anttila-Hughes J K, Jina A S, Mccord G C. ENSO impacts child undernutrition in the global tropics[J]. Nature Communications, 2021, 12(1): 5785. doi: 10.1038/s41467-021-26048-7
|
[8] |
Cai Wenju, Ng B, Geng Tao, et al. Anthropogenic impacts on twentieth-century ENSO variability changes[J]. Nature Reviews Earth & Environment, 2023, 4(6): 407−418.
|
[9] |
任宏利, 郑飞, 罗京佳, 等. 中国热带海−气相互作用与ENSO动力学及预测研究进展[J]. 气象学报, 2020, 78(3): 351−369. doi: 10.11676/qxxb2020.023
Ren Hongli, Zheng Fei, Luo Jingjia, et al. A review of research on tropical air-sea interaction, ENSO dynamics, and ENSO prediction in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 351−369. doi: 10.11676/qxxb2020.023
|
[10] |
Dong Changming, Xu Guangjun, Han Guoqing, et al. Recent developments in artificial intelligence in oceanography[J]. Ocean-Land-Atmosphere Research, 2022, 2022: 9870950.
|
[11] |
Zhu Yuchao, Zhang Ronghua, Moum J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022, 9(8): nwac044.
|
[12] |
Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482. doi: 10.1126/sciadv.aba1482
|
[13] |
Ling Fenghua, Luo Jingjia, Li Yue, et al. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole[J]. Nature Communications, 2022, 13(1): 7681.
|
[14] |
Zhao Sen, Jin Feifei, Stuecker M F, et al. Explainable El Niño predictability from climate mode interactions[J]. Nature, 2024, 630(8018): 891−898. doi: 10.1038/s41586-024-07534-6
|
[15] |
黄刚, 胡开明, 唐颢苏, 等. 从能量学角度理解气候背景场对ENSO热带和热带外遥相关的影响[J]. 大气科学, 2024, 48(1): 218−227
Huang Gang, Hu Kaiming, Tang Haosu, et al. Understanding the influence of background mean-state field on ENSO tropical and extratropical teleconnection from an energetic perspective[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(1): 218−227
|
[16] |
Liu Ze, Lin Yutong, Cao Yue, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992−10002.
|
[17] |
Fekadu K. Ethiopian seasonal rainfall variability and prediction using canonical correlation analysis (CCA)[J]. Earth Sciences, 2015, 4(3): 112−119. doi: 10.11648/j.earth.20150403.14
|
[18] |
Biabanaki M, Eslamian S S, Koupai J A, et al. A principal components/singular spectrum analysis approach to ENSO and PDO influences on rainfall in western Iran[J]. Hydrology Research, 2014, 45(2): 250−262.
|
[19] |
Zhou Lu, Zhang Ronghua. A hybrid neural network model for ENSO prediction in combination with principal oscillation pattern analyses[J]. Advances in Atmospheric Sciences, 2022, 39(6): 889−902. doi: 10.1007/s00376-021-1368-4
|
[20] |
Kido S, Richter I, Tozuka T, et al. Understanding the interplay between ENSO and related tropical SST variability using linear inverse models[J]. Climate Dynamics, 2023, 61(3/4): 1029−1048.
|
[21] |
杨淑贤, 零丰华, 应武杉, 等. 人工智能技术气候预测应用简介[J]. 大气科学学报, 2022, 45(5): 641−659.
Yang Shuxian, Ling Fenghua, Ying Wushan, et al. A brief overview of the application of artificial intelligence to climate pre-diction[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 641−659.
|
[22] |
Fang Wei, Sha Yu, Sheng V S. Survey on the application of artificial intelligence in ENSO forecasting[J]. Mathematics, 2022, 10(20): 3793. doi: 10.3390/math10203793
|
[23] |
Ham Y G, Kim J H, Luo Jingjia. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7
|
[24] |
周佩, 黄颖婕, 胡冰逸, 等. 基于LSTM深度学习的ENSO预测及其春季预报障碍研究[J]. 北京大学学报(自然科学版), 2021, 57(6): 1071−1078.
Zhou Pei, Huang Yingjie, Hu Bingyi, et al. Spring predictability barrier phenomenon in ENSO prediction model based on LSTM Deep learning algorithm[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 1071−1078.
|
[25] |
Geng Huantong, Wang Tianlei. Spatiotemporal model based on deep learning for ENSO forecasts[J]. Atmosphere, 2021, 12(7): 810. doi: 10.3390/atmos12070810
|
[26] |
Ye Min, Nie Jie, Liu Anan, et al. Multi-year ENSO forecasts using parallel convolutional neural networks with heterogeneous architecture[J]. Frontiers in Marine Science, 2021, 8: 717184.
|
[27] |
Rui Chuang, Sun Zhengya, Zhang Wensheng, et al. Enhancing ENSO predictions with self-attention ConvLSTM and temporal embeddings[J]. Frontiers in Marine Science, 2024, 11: 1334210. doi: 10.3389/fmars.2024.1334210
|
[28] |
Lu Yunlong, FENG Junqiao, HU Dunxin. CMIP6 models simulation of the connection between North/South Pacific Meridional Mode and ENSO[J]. Journal of Oceanology and Limnology, 2024, 42(2): 439−453. doi: 10.1007/s00343-023-3024-6
|
[29] |
Lyu Pumeng, Tang Tao, Ling Fenghua, et al. ResoNet: robust and explainable ENSO forecasts with hybrid convolution and transformer networks[J]. Advances in Atmospheric Sciences, 2024, 41(7): 1289−1298. doi: 10.1007/s00376-024-3316-6
|
[30] |
Behringer D, Xue Yan. Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean[C]//Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and LandSurface, AMS 84th Annual Meeting. Seattle, 2004.
|
[31] |
Ouyang Daliang, He Su, Zhang Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1−5.
|
[32] |
Kirtman B P, Min D, Infanti J M, et al. The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction[J]. Bulletin of the American Meteorological Society, 2014, 95(4): 585−601.
|
[33] |
杜先君, 李河. 基于集成GCN-Transformer网络的ENSO预测模型[J]. 海洋学报, 2023, 45(12): 156−165.
Du Xianjun, Li He. ENSO prediction model based on integrated GCN-Transformer network[J]. Haiyang Xuebao, 2023, 45(12): 156−165.
|