Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Wu Qianqian,Li Zhongqiao,Zhang Song, et al. The burial of permafrost organic carbon in the Chukchi Sea and its response to climate change in the past 200 years[J]. Haiyang Xuebao,2024, 46(9):29–37 doi: 10.12284/hyxb2024112
Citation: Wu Qianqian,Li Zhongqiao,Zhang Song, et al. The burial of permafrost organic carbon in the Chukchi Sea and its response to climate change in the past 200 years[J]. Haiyang Xuebao,2024, 46(9):29–37 doi: 10.12284/hyxb2024112

The burial of permafrost organic carbon in the Chukchi Sea and its response to climate change in the past 200 years

doi: 10.12284/hyxb2024112
  • Received Date: 2024-05-23
  • Accepted Date: 2024-08-12
  • Rev Recd Date: 2024-05-31
  • Available Online: 2024-08-13
  • Publish Date: 2024-09-01
  • Against the backdrop of global warming, the Arctic has experienced a series of changes, including permafrost degradation, reduced summer sea ice, increased land runoff, and intensified coastal erosion. With global warming, organic carbon (OC) stored in permafrost is accelerating its migration and release to the sea, which will affect the pattern of carbon cycling in the Arctic Ocean. However, there is currently little evidence to directly confirm this inference. This article analyzes the lignin and carbon isotopes of two hundred year scale sedimentary cores in the Chukchi Sea, and discusses the sources and profile changes of the buried organic matter. The results showed that the organic carbon in the columnar sediments of the Chukchi Sea came from a mixed contribution of herbaceous tissue of terrestrial C3 plants and marine source production. The absolute content of lignin Σ8 in sediment shows an overall upward trend, indicating that with global warming, more terrestrial materials are being transported to the Chukchi Sea. This study indicates that global warming caused by human activities has indeed increased the migration of organic carbon from permafrost to the sea, and the increase in lignin content due to enhanced terrestrial inputs is direct evidence of the enhanced melting of permafrost caused by global warming on a century scale.
  • loading
  • [1]
    Meyer V D, Hefter J, Köhler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming[J]. Environmental Research Letters, 2019, 14(8): 085003. doi: 10.1088/1748-9326/ab2653
    [2]
    Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298(5601): 2171−2173. doi: 10.1126/science.1077445
    [3]
    Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501.
    [4]
    Bröder L, Andersson A, Tesi T, et al. Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea[J]. Global Biogeochemical Cycles, 2019, 33(1): 85−99. doi: 10.1029/2018GB005967
    [5]
    Stocker T F, Qin Dahe, Plattner G K, et al. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
    [6]
    Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171−179. doi: 10.1038/nature14338
    [7]
    Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. Bioscience, 2008, 58(8): 701−714. doi: 10.1641/B580807
    [8]
    Barnhart K R, Anderson R S, Overeem I, et al. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(5): 1155−1179. doi: 10.1002/2013JF002845
    [9]
    Günther F, Overduin P P, Yakshina I A, et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction[J]. The Cryosphere, 2015, 9(1): 151−178. doi: 10.5194/tc-9-151-2015
    [10]
    Bröder L, Tesi T, Salvadó J A, et al. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior[J]. Biogeosciences, 2016, 13(17): 5003−5019. doi: 10.5194/bg-13-5003-2016
    [11]
    Semiletov I P, Shakhova N E, Pipko I I, et al. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea[J]. Biogeosciences, 2013, 10(9): 5977−5996. doi: 10.5194/bg-10-5977-2013
    [12]
    Vonk J E, Sánchez-García L, van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature, 2012, 489(7414): 137−140. doi: 10.1038/nature11392
    [13]
    Keskitalo K, Tesi T, Bröder L, et al. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea[J]. Climate of the Past, 2017, 13(9): 1213−1226. doi: 10.5194/cp-13-1213-2017
    [14]
    Tesi T, Muschitiello F, Smittenberg R H, et al. Massive remobilization of permafrost carbon during post-glacial warming[J]. Nature Communications, 2016, 7: 13653. doi: 10.1038/ncomms13653
    [15]
    Winterfeld M, Mollenhauer G, Dummann W, et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost[J]. Nature Communications, 2018, 9(1): 3666. doi: 10.1038/s41467-018-06080-w
    [16]
    Martens J, Wild B, Pearce C, et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the Last Deglaciation[J]. Global Biogeochemical Cycles, 2019, 33(1): 2−14. doi: 10.1029/2018GB005969
    [17]
    Jakobsson M. Hypsometry and volume of the Arctic Ocean and its constituent seas[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(5): 1028.
    [18]
    Cronin T M, O’Regan M, Pearce C, et al. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins[J]. Climate of the Past, 2017, 13(9): 1097−1110. doi: 10.5194/cp-13-1097-2017
    [19]
    Jakobsson M, Pearce C, Cronin T M, et al. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records[J]. Climate of the Past, 2017, 13(8): 991−1005. doi: 10.5194/cp-13-991-2017
    [20]
    Stein R, MacDonald R W, Naidu A S, et al. Organic carbon in arctic ocean sediments: sources, variability, burial, and paleoenvironmental significance[M]//Stein R, MacDonald R W. The Organic Carbon Cycle in the Arctic Ocean. Berlin Heidelberg: Springer, 2004: 169−314.
    [21]
    Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7: 13043. doi: 10.1038/ncomms13043
    [22]
    Lantuit H, Overduin P P, Couture N, et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines[J]. Estuaries and Coasts, 2012, 35(2): 383−400. doi: 10.1007/s12237-010-9362-6
    [23]
    Su Liang, Ren Jian, Sicre M A, et al. Changing sources and burial of organic carbon in the Chukchi Sea sediments with retreating sea ice over recent centuries[J]. Climate of the Past, 2023, 19(7): 1305−1320. doi: 10.5194/cp-19-1305-2023
    [24]
    Bai Youcheng, Sicre M A, Ren Jian, et al. Centennial-scale variability of sea-ice cover in the Chukchi Sea since AD 1850 based on biomarker reconstruction[J]. Environmental Research Letters, 2022, 17(4): 044058. doi: 10.1088/1748-9326/ac5f92
    [25]
    Hedges J I, Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2): 174−178. doi: 10.1021/ac00239a007
    [26]
    Tesi T, Semiletov I, Hugelius G, et al. Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: insights from biomarkers and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2014, 133: 235−256. doi: 10.1016/j.gca.2014.02.045
    [27]
    Goñi M A, Ruttenberg K C, Eglinton T I. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico[J]. Nature, 1997, 389(6648): 275−278. doi: 10.1038/38477
    [28]
    Goñi M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3055−3075. doi: 10.1016/S0016-7037(98)00217-8
    [29]
    Tareq S M, Handa N, Tanoue E. A lignin phenol proxy record of mid Holocene paleovegetation changes at Lake DaBuSu, northeast China[J]. Journal of Geochemical Exploration, 2006, 88(1/3): 445−449.
    [30]
    Farella N, Lucotte M, Louchouarn P, et al. Deforestation modifying terrestrial organic transport in the Rio Tapajós, Brazilian Amazon[J]. Organic Geochemistry, 2001, 32(12): 1443−1458. doi: 10.1016/S0146-6380(01)00103-6
    [31]
    Yang Liyang, Wu Ying, Zhang Jing, et al. Burial of terrestrial and marine organic carbon in Jiaozhou Bay: different responses to urbanization[J]. Regional Environmental Change, 2011, 11(3): 707−714. doi: 10.1007/s10113-010-0202-9
    [32]
    Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195−212.
    [33]
    郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.

    Zheng Yongfei, Chen Jiangfeng. Stable Isotope Geochemistry[M]. Beijing: Science Press, 2000.
    [34]
    Naidu A S, Cooper L W, Finney B P, et al. Organic carbon isotope ratios (δ13C) of Arctic Amerasian Continental shelf sediments[J]. International Journal of Earth Sciences, 2000, 89(3): 522−532. doi: 10.1007/s005310000121
    [35]
    Goñi M A, O’Connor A E, Kuzyk Z Z, et al. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4017−4035. doi: 10.1002/jgrc.20286
    [36]
    Vonk J E, Gustafsson Ö. Permafrost-carbon complexities[J]. Nature Geoscience, 2013, 6(9): 675−676. doi: 10.1038/ngeo1937
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (146) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return