Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Yu Sitian,Zhao Qi,Li Jiandu, et al. Temporal and spatial variation characteristics of net-collected phytoplankton community structure and its relationship with key environmental factors in the artificial reef area of Xiangyun Bay, Hebei Province[J]. Haiyang Xuebao,2024, 46(9):52–63 doi: 10.12284/hyxb2024110
Citation: Yu Sitian,Zhao Qi,Li Jiandu, et al. Temporal and spatial variation characteristics of net-collected phytoplankton community structure and its relationship with key environmental factors in the artificial reef area of Xiangyun Bay, Hebei Province[J]. Haiyang Xuebao,2024, 46(9):52–63 doi: 10.12284/hyxb2024110

Temporal and spatial variation characteristics of net-collected phytoplankton community structure and its relationship with key environmental factors in the artificial reef area of Xiangyun Bay, Hebei Province

doi: 10.12284/hyxb2024110
  • Received Date: 2024-04-22
  • Rev Recd Date: 2024-05-30
  • Available Online: 2024-08-15
  • Publish Date: 2024-09-01
  • In order to investigate the characteristics and spatial-temporal variations of the phytoplankton community in artificial reef areas, as well as to elucidate the relationship between phytoplankton abundance and environmental factors associated with artificial reef construction, four surveys were conducted in 2021 (May, August, November) and 2022 (January) at two artificial reef areas and a control area in Xiangyun Bay. A total of 70 phytoplankton taxa belonging to 39 genera and 3 classes were identified in this study. The annual average abundance of phytoplankton in the artificial reef areas was recorded as 313.5 × 104 cells/m3, which were 1.4 times higher than that observed in the control area. Except in spring, the richness index, diversity index and evenness index of phytoplankton in the artificial reef areas were higher than those in the control area. The succession rate of dominant species from spring to summer and from summer to autumu in the reef areas were lower than that in the control area, suggesting greater stability of community structure within artificial reef areas compared to the control area. The biological increment index for each phytoplankton taxon ranged from 0.9 to 3.6; notably, Bacillariophyta displayed an average biological increment index value of 1.8. Pearson correlation analysis revealed that phytoplankton abundance was primarily influenced by TP, TN, NH4-N, NO3-N and DIP; significant seasonal differences were observed among these variables. These findings demonstrate that artificial reef construction has a positive conservation effect on phytoplankton communities closely related to temporal and spatial changes in nutrient availability.
  • loading
  • [1]
    Bathmann U V. Mass occurrence of Salpa fusiformis in the spring of 1984 off Ireland: implications for sedimentation processes[J]. Marine Biology, 1988, 97(1): 127−135. doi: 10.1007/BF00391252
    [2]
    李清雪, 陶建华. 应用浮游植物群落结构指数评价海域富营养化[J]. 中国环境科学, 1999, 19(6): 548−551. doi: 10.3321/j.issn:1000-6923.1999.06.017

    Li Qingxue, Tao Jianhua. Application of phytoplankton community indexes in coastal eutrophication assessment[J]. China Environmental Science, 1999, 19(6): 548−551. doi: 10.3321/j.issn:1000-6923.1999.06.017
    [3]
    Wijeyaratne W M D N, Nanayakkara D B M. Monitoring of water quality variation trends in a tropical urban wetland system located within a Ramsar wetland city: a GIS and phytoplankton based assessment[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 14: 100323.
    [4]
    Andrew S M, Strzepek R F, Whitney S M, et al. Divergent physiological and molecular responses of light- and iron-limited Southern Ocean phytoplankton[J]. Limnology and Oceanography Letters, 2022, 7(2): 150−158. doi: 10.1002/lol2.10223
    [5]
    Rodríguez P, Pizarro H. Phytoplankton and periphyton production and its relation to temperature in a humic lagoon[J]. Limnologica, 2015, 55: 9−12. doi: 10.1016/j.limno.2015.10.003
    [6]
    Seaman W. Artificial Reef Evaluation: with Application to Natural Marine Habitats[M]. Boca Raton: CRC Press, 2000: 1−264.
    [7]
    Neori A, Ragg N L C, Shpigel M. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system[J]. Aquacultural Engineering, 1998, 17(4): 215−239. doi: 10.1016/S0144-8609(98)00017-X
    [8]
    Baine M. Artificial reefs: a review of their design, application, management and performance[J]. Ocean & Coastal Management, 2001, 44(3/4): 241−259.
    [9]
    李海州. 海阳富瀚海洋牧场生态环境效应评价[D]. 烟台: 烟台大学, 2019.

    Li Haizhou. Evaluation of the ecological and environmental effects of Haiyang Fuhan Marine Ranching[D]. Yantai: Yantai University, 2019.
    [10]
    杨柳, 张硕, 孙满昌, 等. 海州湾人工鱼礁海域春、夏季浮游植物群落结构及其与环境因子的关系[J]. 生物学杂志, 2011, 28(6): 14−18. doi: 10.3969/j.issn.2095-1736.2011.06.014

    Yang Liu, Zhang Shuo, Sun Manchang, et al. Community structure of phytoplankton and its relationships with environmental factors in artificial reef area of Haizhou Bay in spring and summer[J]. Journal of Biology, 2011, 28(6): 14−18. doi: 10.3969/j.issn.2095-1736.2011.06.014
    [11]
    李志伟, 崔力拓. 人类活动影响下唐山湾近岸海域营养盐及其结构变化[J]. 应用生态学报, 2016, 27(1): 307−314.

    Li Zhiwei, Cui Lituo. Nutrient composition changes in coastal waters of Tangshan Bay, Hebei, China under anthropogenic influence[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 307−314.
    [12]
    梁淼, 姜倩, 孙丽艳, 等. 曹妃甸近岸海域大、中型浮游动物优势种空间生态位研究[J]. 生态环境学报, 2018, 27(7): 1241−1250.

    Liang Miao, Jiang Qian, Sun Liyan, et al. Spatial niches of dominant macro-zooplankton and meso-zooplankton species in the coastal area of Caofeidian[J]. Ecology and Environmental Sciences, 2018, 27(7): 1241−1250.
    [13]
    刘西汉, 石雅君, 姜会超, 等. 曹妃甸邻近海域浮游动物群落时空变化及其影响因素[J]. 海洋科学, 2021, 45(4): 114−125. doi: 10.11759/hykx20200601004

    Liu Xihan, Shi Yajun, Jiang Huichao, et al. Spatial and temporal variations of zooplankton community and their influential factors in Caofeidian coastal waters[J]. Marine Sciences, 2021, 45(4): 114−125. doi: 10.11759/hykx20200601004
    [14]
    Jakobsen H H, Hansen P J. Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum—a comparative study[J]. Marine Ecology Progress Series, 1997, 158: 75−86.
    [15]
    Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs[J]. Science, 1998, 279(5352): 860−863. doi: 10.1126/science.279.5352.860
    [16]
    胥延钊. 渤海渔业生物群落结构特征研究[D]. 上海: 上海海洋大学, 2021.

    Xu Yanzhao. Study on the characteristics of structure of community of fishery species in the Bohai Sea[D]. Shanghai: Shanghai Ocean University, 2021.
    [17]
    杨昊陈. 基于Ecopath模型的唐山海洋牧场人工鱼礁区生态效果评估[D]. 大连: 大连海洋大学, 2019.

    Yang Haochen. Ecological effect evaluation of artificial reef area in Tangshan ocean pasture based on Ecopath model[D]. Dalian: Dalian Ocean University, 2019.
    [18]
    中华人民共和国农业部. SC/T 9417−2015, 人工鱼礁资源养护效果评价技术规范[S]. 北京: 中国农业出版社, 2015.

    Ministry of Agriculture of the People’s Republic of China. SC/T 9417−2015, Technical specification for evaluation of the effects of artificial fish reef[S]. Beijing: China Agriculture Press, 2015.
    [19]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763−2007, 海洋调查规范[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. GB/T 12763−2007, Specifications for oceanographic survey[S]. Beijing: Standards Press of China, 2008.
    [20]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.3−2007, 海洋监测规范第3部分:样品采集、贮存和运输[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB 17378.3−2007, The specification for marine monitoring-Part 3: sample collection, storage and transportation[S]. Beijing: Standards Press of China, 2008.
    [21]
    杨关铭, 何德华, 王春生, 等. 台湾以北海域浮游桡足类生物海洋学特征的研究Ⅱ. 群落特征[J]. 海洋学报, 1999, 21(6): 72−80.

    Yang Guanming, He Dehua, Wang Chunsheng, et al. Study on the biological oceanography characteristics of planktonic copepods in the waters north of Taiwan Island Ⅱ. Community characteristics[J]. Haiyang Xuebao, 1999, 21(6): 72−80.
    [22]
    孙军, 刘东艳. 多样性指数在海洋浮游植物研究中的应用[J]. 海洋学报, 2004, 26(1): 62−75. doi: 10.3321/j.issn:0253-4193.2004.01.007

    Sun Jun, Liu Dongyan. The application of diversity indices in marine phytoplankton studies[J]. Haiyang Xuebao, 2004, 26(1): 62−75. doi: 10.3321/j.issn:0253-4193.2004.01.007
    [23]
    刘玉明, 马克平. 生物群落多样性的测度方法 Ⅰα多样性的测度方法(下)[J]. 生物多样性, 1994, 2(4): 231-239.

    Liu Yuming, Ma Kepin. Measurement method for biodiversity of biological communities Ⅰ α methods for measuring diversity (Part 2)[J]. Biodiversity Science, 1994, 2(4): 231-239.
    [24]
    李建都, 赵祺, 刘晋冀, 等. 黄渤海不同人工鱼礁区渔业生物群落结构特征及生物增量影响要素[J]. 中国水产科学, 2023, 30(3): 371−383. doi: 10.12264/JFSC2022-0406

    Li Jiandu, Zhao Qi, Liu Jinji, et al. Study on the characteristics of fishery biological community structure and factors influencing biomass increments in different artificial reefs in the Yellow Sea and Bohai Sea[J]. Journal of Fishery Sciences of China, 2023, 30(3): 371−383. doi: 10.12264/JFSC2022-0406
    [25]
    陈楠生, 黄海龙. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(一): 渤海[J]. 海洋与湖沼, 2021, 52(2): 346−362. doi: 10.11693/hyhz20200900245

    Chen Nansheng, Huang Hailong. Advances in the study of biodiversity of phytoplankton and red tide species in China (I): the Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2021, 52(2): 346−362. doi: 10.11693/hyhz20200900245
    [26]
    李志伟, 崔力拓. 环境因子对唐山湾海域浮游动物群落结构的驱动作用[J]. 应用生态学报, 2017, 28(11): 3797−3804.

    Li Zhiwei, Cui Lituo. Environmental control of zooplankton community structure in Tangshan Bay, China[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3797−3804.
    [27]
    张雪, 徐晓甫, 戴媛媛, 等. 天津近岸人工鱼礁海域浮游植物群落及其变化特征[J]. 渔业科学进展, 2018, 39(6): 1−10.

    Zhang Xue, Xu Xiaofu, Dai Yuanyuan, et al. Phytoplankton community characteristics and variation at artificial reefs of Tianjin offshore[J]. Progress in Fishery Sciences, 2018, 39(6): 1−10.
    [28]
    刘洪生, 马翔, 章守宇, 等. 人工鱼礁流场效应的模型实验[J]. 水产学报, 2009, 33(2): 229−236.

    Liu Hongsheng, Ma Xiang, Zhang Shouyu, et al. Research on model experiments of effects of artificial reefs on flow field[J]. Journal of Fisheries of China, 2009, 33(2): 229−236.
    [29]
    杨柳. 海州湾人工鱼礁区浮游生物变动分析[D]. 上海: 上海海洋大学, 2011.

    Yang Liu. Variations of plankton in artificial reef area of Haizhou Bay[D]. Shanghai: Shanghai Ocean University, 2011.
    [30]
    Xiao Wupeng, Liu Xin, Irwin A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128: 206−216. doi: 10.1016/j.watres.2017.10.051
    [31]
    Nishikawa T, Tarutani K, Yamamoto T. Nitrate and phosphate uptake kinetics of the harmful diatom Eucampia zodiacus Ehrenberg, a causative organism in the bleaching of aquacultured Porphyra thalli[J]. Harmful Algae, 2009, 8(3): 513−517. doi: 10.1016/j.hal.2008.10.006
    [32]
    栾青杉, 康元德, 王俊. 渤海浮游植物群落的长期变化(1959~2015)[J]. 渔业科学进展, 2018, 39(4): 9−18.

    Luan Qingshan, Kang Yuande, Wang Jun. Long-term changes in the phytoplankton community in the Bohai Sea (1959~2015)[J]. Progress in Fishery Sciences, 2018, 39(4): 9−18.
    [33]
    陈善文, 高亚辉, 杜虹, 等. 双环海链藻(Thalassiosira diporocyclus Hasle)赤潮[J]. 海洋与湖沼, 2004, 35(2): 130−137. doi: 10.3321/j.issn:0029-814X.2004.02.004

    Chen Shanwen, Gao Yahui, Du Hong, et al. First recording of Thalassiosira diporocyclus bloom in the Southeast China Sea[J]. Oceanologia et Limnologia Sinica, 2004, 35(2): 130−137. doi: 10.3321/j.issn:0029-814X.2004.02.004
    [34]
    张琪, 孙家伟, 冯延竹, 等. 天津沿海赤潮发生的基本特征研究[J]. 海洋预报, 2020, 37(1): 62−66. doi: 10.11737/j.issn.1003-0239.2020.01.009

    Zhang Qi, Sun Jiawei, Feng Yanzhu, et al. Research on the basic characteristics of red tide in Tianjin coastal area[J]. Marine Forecasts, 2020, 37(1): 62−66. doi: 10.11737/j.issn.1003-0239.2020.01.009
    [35]
    Paxton A B, Revels L W, Rosemond R C, et al. Convergence of fish community structure between a newly deployed and an established artificial reef along a five-month trajectory[J]. Ecological Engineering, 2018, 123: 185−192. doi: 10.1016/j.ecoleng.2018.09.012
    [36]
    赵荣荣. 长岛挡浪岛人工鱼礁生态修复效果初步评价[D]. 舟山: 浙江海洋大学, 2019.

    Zhao Rongrong. Preliminary evaluation on ecological restoration effect of artificial reefs in Danglang Island, ChangDao Island[D]. Zhoushan: Zhejiang Ocean University, 2019.
    [37]
    侯润. 祥云湾海洋牧场牡蛎礁构建效果评估[D]. 秦皇岛: 河北农业大学, 2022.

    Hou Run. Effect evaluation of oyster reef construction in Xiangyun Bay marine ranching[D]. Qinhuangdao: Hebei Agricultural University, 2022.
    [38]
    崔毅, 陈碧鹃, 马绍赛. 乳山湾浮游植物与环境因子的相关关系研究[J]. 应用生态学报, 2000, 11(6): 935−938. doi: 10.3321/j.issn:1001-9332.2000.06.030

    Cui Yi, Chen Bijuan, Ma Shaosai. Correlation of photoplankton and its environmental factors in Rushan Bay[J]. Chinese Journal of Applied Ecology, 2000, 11(6): 935−938. doi: 10.3321/j.issn:1001-9332.2000.06.030
    [39]
    李大鹏, 张硕, 石一茜, 等. 海州湾海洋牧场浮游植物群落年际变化特征分析[J]. 生态环境学报, 2017, 26(2): 285−295.

    Li Dapeng, Zhang Shuo, Shi Yiqian, et al. Different seasonal changes of phytoplankton community in the marine farming of Haizhou Bay[J]. Ecology and Environmental Sciences, 2017, 26(2): 285−295.
    [40]
    刘长东, 易坚, 郭晓峰, 等. 荣成俚岛人工鱼礁区浮游植物群落结构及其与环境因子的关系[J]. 中国海洋大学学报(自然科学版), 2016, 46(3): 50−59.

    Liu Changdong, Yi Jian, Guo Xiaofeng, et al. Phytoplankton community structure in artificial reef area around Lidao, Rongcheng, and its relationship with environmental factors[J]. Periodical of Ocean University of China, 2016, 46(3): 50−59.
    [41]
    李欣宇, 张云岭, 齐遵利, 等. 基于Ecopath模型的祥云湾海洋牧场生态系统结构和能量流动分析[J]. 大连海洋大学学报, 2023, 38(2): 311−322.

    Li Xinyu, Zhang Yunling, Qi Zunli, et al. Analysis of ecosystem structure and energy flow in Xiangyun Bay marine ranching based on Ecopath model[J]. Journal of Dalian Ocean University, 2023, 38(2): 311−322.
    [42]
    周毅, 杨红生, 张福绥. 海水双壳贝类的N、P排泄及其生态效应[J]. 中国水产科学, 2003, 10(2): 165−168. doi: 10.3321/j.issn:1005-8737.2003.02.016

    Zhou Yi, Yang Hongsheng, Zhang Fusui. Nitrogen and phosphorus excretions by marine bivalves and the ecological effects[J]. Journal of Fishery Sciences of China, 2003, 10(2): 165−168. doi: 10.3321/j.issn:1005-8737.2003.02.016
    [43]
    肖荣, 杨红. 人工鱼礁建设对福建霞浦海域营养盐输运的影响[J]. 海洋科学, 2016, 40(2): 94−101. doi: 10.11759/hykx20150331002

    Xiao Rong, Yang Hong. Influence of artificial reef construction on the transportation of nutrients in the off-shore area of Xiapu, Fujian[J]. Marine Sciences, 2016, 40(2): 94−101. doi: 10.11759/hykx20150331002
    [44]
    王旭. 祥云湾海洋牧场贝藻礁生态系统结构功能研究[D]. 青岛: 中国海洋大学, 2022.

    Wang Xu. The study of the structure and function of artificial algae-shellfish reef ecosystem at Xiangyun Bay marine ranching[D]. Qingdao: Ocean University of China, 2022.
    [45]
    Cloern J E. Does the benthos control phytoplankton biomass in South San Francisco Bay?[J]. Marine Ecology Progress Series, 1982, 9: 191−202. doi: 10.3354/meps009191
    [46]
    Prins T C, Smaal A C. The role of the blue mussel Mytilus edulis in the cycling of nutrients in the Oosterschelde estuary (The Netherlands)[J]. Hydrobiologia, 1994, 282-283: 413−429.
    [47]
    张升利, 张安国, 袁秀堂, 等. 底播增殖菲律宾蛤仔碳、氮、磷收支[J]. 应用生态学报, 2015, 26(4): 1244−1252.

    Zhang Shengli, Zhang Anguo, Yuan Xiutang, et al. Carbon, nitrogen, and phosphorus budgets of bottom-cultured clam Ruditapes philippinarum[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1244−1252.
    [48]
    李希磊, 杨俊丽, 于潇, 等. 烟台四十里湾扇贝养殖区浮游植物群落调查[J]. 海洋科学, 2018, 42(8): 30−37. doi: 10.11759/hykx20180109002

    Li Xilei, Yang Junli, Yu Xiao, et al. Investigation of phytoplankton community in the scallop culture area of Sishili Bay in Yantai[J]. Marine Sciences, 2018, 42(8): 30−37. doi: 10.11759/hykx20180109002
    [49]
    周毅, 杨红生, 何义朝, 等. 四十里湾几种双壳贝类及污损动物的氮、磷排泄及其生态效应[J]. 海洋与湖沼, 2002, 33(4): 424−431. doi: 10.3321/j.issn:0029-814X.2002.04.012

    Zhou Yi, Yang Hongsheng, He Yichao, et al. Nitrogen and phosphorus excretion and its ecological effect by several bivalves and fouling animals[J]. Oceanologia et Limnologia Sinica, 2002, 33(4): 424−431. doi: 10.3321/j.issn:0029-814X.2002.04.012
    [50]
    高凤祥. 乳山湾浮游植物群落结构与太平洋牡蛎性成熟的研究[D]. 青岛: 中国海洋大学, 2006.

    Gao Fengxiang. Studies on phytoplankton community structure and sexual maturation of the Pacific Oyster[D]. Qingdao: Ocean University of China, 2006.
    [51]
    Schindler D W, Hecky R E, Findlay D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11254−11258.
    [52]
    胡章喜, 徐宁, 段舜山. 不同氮源对4种海洋微藻生长的影响[J]. 生态环境学报, 2010, 19(10): 2452−2457.

    Hu Zhangxi, Xu Ning, Duan Shunshan. Effects of nitrogen sources on the growth of Heterosigma akashiw, Karenia sp. , Phaeocystis globosa and Chaetoceros sp. [J]. Ecology and Environmental Sciences, 2010, 19(10): 2452−2457.
    [53]
    Harrison W G, Douglas D, Falkowski P, et al. Summer nutrient dynamics of the Middle Atlantic Bight: nitrogen uptake and regeneration[J]. Journal of Plankton Research, 1983, 5(4): 539−556. doi: 10.1093/plankt/5.4.539
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article views (72) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return