Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Zhang Yang. A new method for fast calculation of steady periodic water waves[J]. Haiyang Xuebao,2024, 46(10):88–97 doi: 10.12284/hyxb2024109
Citation: Zhang Yang. A new method for fast calculation of steady periodic water waves[J]. Haiyang Xuebao,2024, 46(10):88–97 doi: 10.12284/hyxb2024109

A new method for fast calculation of steady periodic water waves

doi: 10.12284/hyxb2024109
  • Received Date: 2024-05-05
  • Accepted Date: 2024-09-27
  • Rev Recd Date: 2024-09-20
  • Available Online: 2024-09-29
  • Publish Date: 2024-10-30
  • A method for the fast calculation of steadily progressing periodic waves by using parameterized expressions is presented. The free surface elevation of steady periodic water waves is approximated by ABR triangular series, and the nonlinear parameter in ABR series is obtained by a numerical calculation of the free surface boundary conditions. The advantage of using ABR series is that it is simple in form and contains only one parameter, so it is convenient to study the relationship between this parameter and wave parameters, and then estimate the wave free surface elevation. For conditions of different wave theories applying (Stokes wave theory and cnoidal wave theory), the results calculated by the new method are compared with the analytical solutions of Stokes wave theory, cnoidal wave theory, and the numerical solutions given by the Fourier method. In addition, the expressions of the nonlinear parameter in the ABR series determined by the wave steepness (in deep water) or the Ursell number (in non-deep water) are given in order to efficiently predict free surface elevations. Finally, the method of calculating time averaged sand transport rates related to wave nonlinearity by using free surface elevation is given for practical engineering applications.
  • loading
  • [1]
    Gerstner F. Theorie der wellen: Abhandlungen der Koniglichen Bohmischen Gesellschaft der Wissenschaften, Prague; also, Gilbert's[J]. Annalen der Physik, 1802, 32: 412−445. (查阅网上资料, 不确定修改是否正确, 请确认)
    [2]
    Stokes G G. On the theory of oscillatory waves[J]. Transactions of the Cambridge Philosophical Society, 1847, 8: 441−455.
    [3]
    Fenton J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2): 216−234. doi: 10.1061/(ASCE)0733-950X(1985)111:2(216)
    [4]
    Horikawa K. Nearshore Dynamics and Coastal Processes: Theory, Measurement, and Predictive Models[M]. Tokyo: University of Tokyo Press, 1988.
    [5]
    Zhao Hongjun, Song Zhiyao, Li Ling, et al. On the fifth-order stokes solution for steady water waves[J]. China Ocean Engineering, 2016, 30(5): 794−810. doi: 10.1007/s13344-016-0051-5
    [6]
    Zhao Kuifeng, Liu P L F. On stokes wave solutions[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478(2258): 20210732. doi: 10.1098/rspa.2021.0732
    [7]
    Fang Haiqi, Liu P L F, Tang Lian, et al. The theory of fifth-order Stokes waves in a linear shear current[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479(2280): 20230565. doi: 10.1098/rspa.2023.0565
    [8]
    Korteweg D J, De Vries G. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422−443. doi: 10.1080/14786449508620739
    [9]
    Fenton J D. A high-order cnoidal wave theory[J]. Journal of Fluid Mechanics, 1979, 94(1): 129−161. doi: 10.1017/S0022112079000975
    [10]
    Chappelear J E. Direct numerical calculation of wave properties[J]. Journal of Geophysical Research, 1961, 66(2): 501−508. doi: 10.1029/JZ066i002p00501
    [11]
    Dean R G. Stream function representation of nonlinear ocean waves[J]. Journal of Geophysical Research, 1965, 70(18): 4561−4572. doi: 10.1029/JZ070i018p04561
    [12]
    Rienecker M M, Fenton J D. A Fourier approximation method for steady water waves[J]. Journal of Fluid Mechanics, 1981, 104: 119−137. doi: 10.1017/S0022112081002851
    [13]
    Zhao Hongjun, Song Zhiyao, Li Ling, et al. On the Fourier approximation method for steady water waves[J]. Acta Oceanologica Sinica, 2014, 33(5): 37−47. doi: 10.1007/s13131-014-0470-1
    [14]
    Abreu T, Silva P A, Sancho F, et al. Analytical approximate wave form for asymmetric waves[J]. Coastal Engineering, 2010, 57(7): 656−667. doi: 10.1016/j.coastaleng.2010.02.005
    [15]
    Ruessink B G, Ramaekers G, Van Rijn L C. On the parameterization of the free-stream non-linear wave orbital motion in nearshore morphodynamic models[J]. Coastal Engineering, 2012, 65: 56−63. doi: 10.1016/j.coastaleng.2012.03.006
    [16]
    Svendsen I A. Mass flux and undertow in a surf zone[J]. Coastal Engineering, 1984, 8(4): 347−365. doi: 10.1016/0378-3839(84)90030-9
    [17]
    Lé Méhauté B. An introduction to hydrodynamics and water waves[M]. New York: Springer-Verlag, 1976.
    [18]
    Zhao Kuifeng, Wang Yufei, Liu P L F. A guide for selecting periodic water wave theories-Le Méhauté (1976)’s graph revisited[J]. Coastal Engineering, 2024, 188: 104432. doi: 10.1016/j.coastaleng.2023.104432
    [19]
    邹志利. 水波理论及其应用[M]. 北京: 科学出版社, 2005.

    Zou Zhili. Water Wave Theories and Their Applications[M]. Beijing: Science Press, 2005.
    [20]
    Bailard J A, Inman D L. An energetics bedload model for a plane sloping beach: local transport[J]. Journal of Geophysical Research: Oceans, 1981, 86(C3): 2035−2043. doi: 10.1029/JC086iC03p02035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (143) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return